Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/2021 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorD’Azevedo Breda, Ana Maria-
dc.contributor.authorDos Santos, José Manuel-
dc.date.accessioned2022-11-03T23:43:12Z-
dc.date.available2022-11-03T23:43:12Z-
dc.date.issued2021-12-13-
dc.identifier.issn0370-3908spa
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/2021-
dc.description.abstractEn este artículo describimos un experimento de enseñanza dirigido a estudiantes de Análisis Complejo que asisten a un curso de pregrado de una universidad portuguesa. Nuestro principal objetivo es la comprensión del papel de GeoGebra con respecto a la visualización y como mediador tecnológico, según la teoría de Vygotsky, en el proceso de enseñanza y aprendizaje de funciones complejas. El primer paso de nuestro estudio fue la concepción de una secuencia de tareas didácticas y el desarrollo de herramientas de GeoGebra relacionadas con los objetivos didácticos previstos. Aquí describiremos el procedimiento relacionado con la implementación de tareas en un entorno de aula y los resultados obtenidos en función de los datos recopilados compuestos por tareas escritas producidas por los estudiantes, grabación en video del desempeño de los estudiantes durante el experimento y las construcciones de los estudiantes con GeoGebra.spa
dc.description.abstractIn this paper we describe a teaching experiment targeting with students of Complex Analysis attending an undergraduate course of a portuguese university. Our main goal is the understanding of the GeoGebra role with respected to visualization and as technological mediator, according to Vygotsky theory, in the teaching and learning process of complex functions. The first step of our study was the conception of a sequence of didactical tasks and the development of GeoGebra tools related to the target didactical objectives. Here we will describe the procedure related to the tasks implementation in a classroom environment and the achieved results based on the collected data composed by written assignements produced by students, video recording the student performance during the experiment and the student constructions with GeoGebra. All the collected data was analysed from a qualitative and interpretative paradigm.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.titleAprendiendo funciones complejas con GeoGebraspa
dc.titleLearning complex functions with GeoGebraeng
dc.typeArtículo de periódicospa
dcterms.audienceEstudiantes, Profesores, Comunidad científica.spa
dcterms.referencesArcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational studies in mathematics, 52(3), 215–241.spa
dcterms.referencesArcavi, A.,&Hadas, N. (2000). Computer mediated learning: An example of an approach. International journal of computers for mathematical learning, 5(1), 25–45. doi: 10.1023/A:1009841817245spa
dcterms.referencesArzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practises in cabri environments. Zentralblatt f¨ur Didaktik der Mathematik, 34(3), 66–72.spa
dcterms.referencesAsiala, M., Brown, A., DeVries, D. J., Dubinsky, E., Mathews, D., & Thomas, K. (1997). A framework for research and curriculum development in undergraduate mathematics education. Maa Notes,(), 37–54.spa
dcterms.referencesBarrera-Mora, F., & Reyes-Rodr´ıguez, A. (2013). Cognitive processes developed by students when solving mathematical problems within technological environments. The Mathematics Enthusiast, 10(1), 109–136.spa
dcterms.referencesBogdan, R. C., & Biklen, S. K. (1997). Qualitative research for education an introduction to theories and models. Allyn & Bacon Boston, MA.spa
dcterms.referencesBreda, A., Trocado, A., & Dos Santos, J. M. D. S. (2013). O geogebra para al´em da segunda dimens˜ao. Indagatio Didactica, 5(1), 60–84. Retrieved from http://revistas.ua.pt/index.php/ID/article/view/2421/2292spa
dcterms.referencesBreda, A. M. D., & Dos Santos, J. M. D. S. (2015). The riemann sphere in geogebra. Sensos-e, 2(1), 2183–1432. Retrieved from http://sensos-e.ese.ipp.pt/?p=7997spa
dcterms.referencesBreda, A. M. D.,&Dos Santos, J. M. D. S. (2016, 05). Complex functions with GeoGebra. Teaching Mathematics and its Applications: An International Journal of the IMA, 35(2), 102–110. Retrieved from https://doi.org/10.1093/teamat/hrw010 doi: 10.1093/teamat/hrw010spa
dcterms.referencesBu, L., Spector, J. M., & Haciomeroglu, E. S. (2011). Toward model-centered mathematics learning and instruction using geogebra. In L. Bu & R. Schoen (Eds.), Modelcentered learning: Pathways to mathematical understanding using geogebra (p. 13-40). Rotterdam: SensePublishers. Retrieved from https://doi.org/10.1007/978-94-6091-618-2 3 doi: 10.1007/978-94-6091-618-2 3spa
dcterms.referencesClements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 420–464). New York: Macmillan.spa
dcterms.referencesClements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 420–464). New York: Macmillan.spa
dcterms.referencesCobb, P., Confrey, J., DiSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational researcher, 32(1), 9–13.spa
dcterms.referencesCole, M., & Wertsch, J. V. (1996). Beyond the individual-social antinomy in discussions of Piaget and Vygotsky. Human development, 39(5), 250–256.spa
dcterms.referencesDanenhower, P. (2006). Introductory complex analysis at two British Columbia Universities: The first week-complex numbers. CBMS Issues in Mathematics Education, 13(), 139–170.spa
dcterms.referencesDos Santos, J. M. D. S., & Peres, M. J. (2012). Atitudes dos alunos face ao geogebra – construc¸ ˜ao e validac¸ ˜ao de um invent´ario. Revista do Instituto GeoGebra Internacional de S˜ao Paulo., 1(1).spa
dcterms.referencesDubinsky, E. (1984). A Constructivist theory of learning in undergraduate mathematics education research. ICMI.spa
dcterms.referencesDubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall (Ed.), Advanced mathematical thinking (Vol. 11, pp. 95–126). Netherlands: Springer.spa
dcterms.referencesDubinsky, E., Czarnocha, B., Prabhu, V., & Vidakovic, D. (1999). One theoretical perspective in undergraduate mathematics education research. In O. Zaslavsky & I. G. for the Psychology of Mathematics Education (Eds.), Proceedings of the 23rd conference of the international group for the psychology of mathematics education, [haifa, israel, july 25-30 (Vol. 4, pp. 65–73). Retrieved from http://files.eric.ed.gov/fulltext/ED436403.pdfspa
dcterms.referencesDubinsky, E., & Mcdonald, M. A. (2002). Apos: A constructivist theory of learning in undergraduate mathematics education research. In D. Holton, M. Artigue, U. Kirchgr¨aber, J. Hillel, M. Niss, & A. Schoenfeld (Eds.), The teaching and learning of mathematics at university level: An icmi study (pp. 275–282). Dordrecht: Springer Netherlands. Retrieved from https://doi.org/10.1007/0-306-47231-7 25 doi: 10.1007/0-306-47231-7 25spa
dcterms.referencesDubinsky, E., &Wilson, R. T. (2013). High school students’ understanding of the function concept. The Journal of Mathematical Behavior, 32(1), 83–101.spa
dcterms.referencesFarris, F. A. (1997). Visualizing complex-valued functions in the plane. AMC, 10(12.), .spa
dcterms.referencesFlashman, M. (2016). Making sense of calculus with mapping diagrams. MAA. Guba, E. G., Guba, Y. A. L., & Lincoln, Y. S. (1994). Competing paradigms in qualitative research. Handbook of qualitative research,(), . doi: http://www.uncg.edu/hdf/facultystaff/Tudge/Guba%20&%20Lincoln%201994.pdfspa
dcterms.referencesGuti´errez, R. A. (1996). Visualization in 3-dimensional geometry: In search of a framework. In 18 pme conference (pp. 3–19).spa
dcterms.referencesHarel, G. (2013). Dnr-based curricula: The case of complex numbers. Humanistic Mathematics, 3(2), 2–61.spa
dcterms.referencesHeid, M. K., & Blume, G. W. (2008). Algebra and function development. Research on technology and the teaching and learning of mathematics, 1(), 55–108.spa
dcterms.referencesHohenwarter, M., Hohenwarter, J., Kreis, Y., & Lavicza, Z. (2008). Teaching and calculus with free dynamic mathematics software geogebra. In 11th international congress on mathematical education. ICME.spa
dcterms.referencesHollebrands, K. F. (2007). The role of a dynamic software program for geometry in the strategies high school mathematics students employ. Journal for research in mathematics education,(), 164–192.spa
dcterms.referencesJones, K. (2000). Providing a foundation for deductive reasoning: students’ interpretations when using dynamic geometry software and their evolving mathematical explanations. Educational Studies in Mathematics,(), 55–85.spa
dcterms.referencesKreis, Y. (2004). Math´e-mat-TIC: Integration de l’outil informatique dans le cours de mathematiques de la classe de 4e (Travail de candidature). Luxembourg: Minist´ere de l’ ´ Eucation Nationale et de la Formation Professionnelle. Lavicza, Z. (2010). Integrating technology into mathematics teaching at the university level. ZDM,(), 105–119. Retrieved from http://www.springerlink.com/index/1188K58KH5562T32.pdf doi: 10.1007/s11858-009-0225-1spa
dcterms.referencesListe, R. L. (2014). El color dinamico de geogebra. Gaceta De La Real Sociedad Matematica Española, 17(3), 525–547.spa
dcterms.referencesMascarello, M., & Winkelmann, B. (1986). Calculus and the computer. the interplay of discrete numerical methods and calculus in the education of users of mathematics: considerations and experiences. In The influence of computers and informatics on mathematics and its teaching: Proceedings from a symposium. strasbourg, france: International commission on mathematical instruction (Vol. 1, p. 120).spa
dcterms.referencesMeng, P.-C., Jiang, Z.-X., Shi, S.-Z., & Liang, S.-M. (2014). Study of a combination of complex function learning with mathematical modeling. In 2014 international conference on management science and management innovation (msmi 2014) (pp.357–360).spa
dcterms.referencesming Zhang, Y., &Wang, D. (2013). Teaching reform on the course of complex analysis. In Proceedings of the 2013 conference on education technology and management science (icetms 2013) (p. 587-589). Atlantis Press. Retrieved from https://doi.org/10.299/icetms.2013.161 doi: https://doi.org/10.2991/icetms.2013.161spa
dcterms.referencesNavetta, A. (2016). Visualizing functions of complex numbers using geogebra. North American GeoGebra Journal, 5(2).spa
dcterms.referencesNeedham, T. (1998). Visual complex analysis. Oxford University Press. Nemirovsky, R., & Soto-Johnson, H. (2013). On the emergence of mathematical objects: The case of eaz. In Proceedings of the 16th annual conference on research in undergraduate mathematics education (p. 219-226).spa
dcterms.referencesNordlander, M. C., & Nordlander, E. (2012). On the concept image of complex numbers. International Journal of Mathematical Education in Science and Technology, 43(5), 627-641. Retrieved from https://doi.org/10.1080/0020739X.2011.633629spa
dcterms.referencesOlive, J. (2000). Implications of using dynamic geometry technology for teaching and learning. In Conference on teaching and learning problems in geometry.spa
dcterms.referencesPanaoura, A., Elia, I., Gagatsis, A., & Giatilis, G. P. (2006). Geometric and algebraic approaches in the concept of complex numbers. International Journal of Mathematical Education in Science and Technology, 37(6), 681–706. doi: 10.1080/00207390600712281spa
dcterms.referencesPoelke, K., & Polthier, K. (2009). Lifted domain coloring. Computer Graphics Forum, 28(3), 735-742. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01479.x doi: 10.1111/j.1467-8659.2009.01479.xspa
dcterms.referencesPonte, J. P. (2005). Gest˜ao curricular em matem´atica. O professor e o desenvolvimento curricular.spa
dcterms.referencesPresmeg, N. C. (1997). Generalization using imagery in mathematics. In L. D. English (Ed.), Mathematical reasoning: Analogies, metaphors, and images (pp. 299–312). Lawrence Erlbaum Associates, Inc., Publishers.spa
dcterms.referencesRoth, W.-M. (2003). Toward an anthropology of graphing. In Toward an anthropology of graphing: Semiotic and activity-theoretic perspectives (pp. 1–21). Dordrecht: Springer Netherlands. Retrieved from https://doi.org/10.1007/978-94-010-0223-3 1 doi: 10.1007/978-94-010-0223-3 1spa
dcterms.referencesSalomon, G. (1990). Cognitive effects with and of computer technology. Communication Research, 17(1), 26–44. doi: 10.1177/009365090017001002spa
dcterms.referencesSfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics,22(1), 1–36. doi: 10.1007/BF00302715spa
dcterms.referencesSfard, A. (1994). Reification as the birth of metaphor. For the Learning of Mathematics,14(1), 44–55. doi: 10.1371/journal.pone.0016782spa
dcterms.referencesSoto-Johnson, H., & Troup, J. (2014). Reasoning on the complex plane via inscriptions and gesture. Journal of Mathematical Behavior, 36(), 109–125. doi: 10.1016/j.jmathb.2014.09.004spa
dcterms.referencesTabaghi, S. G., & Sinclair, N. (2013). Using dynamic geometry software to explore eigenvectors: The emergence of dynamic-synthetic-geometric thinking. Technology, Knowledge and Learning, 18(3), 149–164. doi: 10.1007/s10758-013-9206-0spa
dcterms.referencesTakaˇci, D., Stankov, G., & Milanovic, I. (2015). Efficiency of learning environment using geogebra when calculus contents are learned in collaborative groups. Computers and Education, 82(), 421–431. doi: 10.1016/j.compedu.2014.12.002spa
dcterms.referencesVitale, J. M., Black, J. B., & Swart, M. I. (2014). Applying grounded coordination challenges to concrete learning materials: A study of number line estimation. Journal of Educational Psychology,(), . doi: 10.1037/a0034098spa
dcterms.referencesVygotsky, L. (1978). Mind in society: The development of higher psychological processes. Wegert, E. (2012). Visual complex functions: An introduction with phase portraits. Springer Basel. doi: 10.1007/978-3-0348-0180-5 1spa
dcterms.referencesWegert, E., & Semmler, G. (2010). Phase plots of complex functions: a journey in illustration. Notices AMS, 58(), 768–780.spa
dcterms.referencesWright, D. (2005). Graphical calculators’ in teaching secondary mathematics with ict. In S. Johnston-Wilder & D. Pimm (Eds.), Ict and the mathematics classroom-part b (p. 145-158). New York, NY, USA: McGraw-Hill.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/updatedVersionspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.1504-
dc.subject.proposalGeoGebraspa
dc.subject.proposalGeoGebraeng
dc.subject.proposalAprendizaje de matemáticas spa
dc.subject.proposal Mathematics learningeng
dc.subject.proposalEnseñanza de las Matemáticasspa
dc.subject.proposalMathematics Teachingeng
dc.subject.proposalFunciones complejasspa
dc.subject.proposal Complex functionsspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume45spa
dc.relation.citationstartpage1262spa
dc.relation.citationendpage1276spa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.identifier.eissn2382-4980spa
dc.relation.citationissue177spa
dc.type.contentTextspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BB. Boletín Electrónico de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales

Files in This Item:
File Description SizeFormat 
22 1504 LATEX Learning complex functions with GeoGebra .pdf3.06 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons