Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/2811 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRodríguez, José F-
dc.contributor.authorRodríguez, Yeinzon-
dc.date.accessioned2024-01-31T03:28:35Z-
dc.date.available2024-01-31T03:28:35Z-
dc.date.issued2012-12-26-
dc.identifier.issn0370-3908spa
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/2811-
dc.description.abstractLos estudios experimentales de las supernovas tipo Ia y de la radiación cósmica de fondo han mostrado la reciente expansión acelerada del Universo. Para explicar este comportamiento, se introdujo una forma hipotética de energía llamada la energía oscura. Por otro lado, la presencia de una constante cosmológica en las ecuaciones de campo provoca una expansión acelerada del Universo; así, esta última se identifica con la energía oscura. Además la energía del estado de vacío exhibe las mismas consecuencias de una constante cosmológica; por consiguiente, el valor experimental de la energía de vacío debe contribuir al valor experimental de la constante cosmológica, y ambos deben tener el mismo orden de magnitud. Sin embargo, al comparar los dos valores, hay una diferencia de más de 55 ´ordenes de magnitud. Con el fin de establecer concordancia, es necesario hacer un ajuste fino en el valor experimental de la constante cosmológica. La imposibilidad de evitar un ajuste fino se conoce como el viejo problema de la constante cosmológica. Se han planteado muchas soluciones, tales como la sustitución de la constante cosmológica por un campo escalar; sin embargo, estas soluciones no resuelven realmente el problema. Se presentará una solución alternativa, en la cual la constante cosmológica es complementada con un nuevo término originado a partir de modificaciones de la gravedad. La modificación se realiza mediante la introducción de una función f(R, G), donde R es el escalar de Ricci y G es el invariante de Gauss-Bonnet. El término nuevo, que se puede interpretar como un fluido cósmico con una forma particular para su ecuación de estado, evoluciona en el tiempo relajando de manera dinámica la enorme diferencia entre la energía de vacío y la constante cosmológica.spa
dc.description.abstractThe experimental studies of the type Ia supernovae and of the cosmic microwave background radiation have shown the recent accelerated expansion of the Universe. To explain this behavior, a hypothetical form of energy called the dark energy was introduced. On the other hand, the presence of a cosmological constant in the field equations causes an accelerated expansion of the Universe; thus, the latter is identified with the dark energy. Moreover, the energy of the vacuum state exhibits the same consequences of a cosmological constant; therefore, the experimental value of the vacuum energy must contribute to the experimental value of the cosmological constant, and both values must have the same order of magnitude. However, when the two values are compared, there exists a difference of more than 55 orders of magnitude. In order to establish concordance, it is necessary to do a fine-tuning in the experimental value of the cosmological constant. The impossibility to avoid this fine-tuning is called the old cosmological constant problem. Many solutions have been raised, such as the replacement of the cosmological constant by a scalar field; however, these solutions do not actually solve the problem. We will present an alternative solution, in which the cosmological constant is complemented by a new term originated from modifications of gravity. The modification is performed by introducing a function f(R, G), where R is the Ricci scalar and G is the Gauss-Bonnet invariant. The new term, which can be interpreted as a cosmic fluid with a particular form for its equation of state, evolves in time dynamically relaxing the enormous difference between the vacuum energy and the cosmological constant.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsLa revista de la Academia se distribuye con el modelo de acceso abierto y la licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International con el fin de contribuir a la visibilidad, el acceso y la difusión de la producción científica.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.titleEL MECANISMO DEL UNIVERSO RELAJADO: POSIBLE SOLUCIÓN DINÁMICA Y LIBRE DE AJUSTES FINOS AL VIEJO PROBLEMA DE LA CONSTANTE COSMOLÓGICAspa
dc.titleTHE RELAXED UNIVERSE MECHANISM: A POSSIBLE DYNAMICAL AND FREE OF FINE-TUNING SOLUTION TO THE OLD COSMOLOGICAL CONSTANT PROBLEMspa
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, Profesores, Comunidad científica colombiana.spa
dcterms.referencesAad G. et. al., [ATLAS Collaboration], 2012. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716, 1.spa
dcterms.referencesAbbot L., 1985. A mechanism for reducing the value of the cosmological constant, Phys. Lett. B 150, 427.spa
dcterms.referencesAntoniadis I. & Mottola E., 1992. 4-D quantum gravity in the conformal sector, Phys. Rev. D 45, 2013.spa
dcterms.referencesArmendariz-Picon C., Mukhanov V. & Steinhardt P. J., 2000. A dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration, Phys. Rev. Lett. 85, 4438.spa
dcterms.referencesArmsen M., 1977. A variational proof of the Gauss-Bonnet formula, Manuscripta. Math. 20, 245.spa
dcterms.referencesBarr S., 1987. An attempt at a classical cancellation of the cosmological constant, Phys. Rev. D 36, 1691.spa
dcterms.referencesBarr S. & Hochberg D., 1988. Dynamical adjustment of the cosmological constant, Phys. Lett. B 211, 49.spa
dcterms.referencesBauer F., 2010. The cosmological constant and the relaxed universe, J. Phys. Conf. Ser. 259, 012083.spa
dcterms.referencesBauer F., Sola J. & Stefancic H., 2010a. Dynamically avoiding fine-tuning the cosmological constant: the “relaxed universe”, JCAP 1012, 029.spa
dcterms.referencesBauer F., Sola J. & Stefancic H., 2010b. The relaxed universe: towards solving the cosmological constant problem dynamically from an effective action functional of gravity, Phys. Lett. B 688, 269.spa
dcterms.referencesBauer F., Sola J. & Stefancic H., 2011. Relaxing a large cosmological constant in the astrophysical domain, Mod, Phys. Lett. A 26, 2556.spa
dcterms.referencesBeringer J. et. al. 2012. Review of Particle Physics (RPP), Phys. Rev. D 86, 010001.spa
dcterms.referencesBressi G., Carugno G., Onofrio R. & Ruoso G., 2002. Measurement of the Cassimir force between parallel metallic surfaces, Phys. Rev. Lett. 88, 041804.spa
dcterms.referencesBruneton J.-P. et. al., 2012. Fab Four: when John and George play gravitation and cosmology, Adv. Astron. 2012, 430694.spa
dcterms.referencesCaldwell R. R., Dave R. & Steinhardt P. J., 1998. Cosmological imprint of an energy component with general equation of state, Phys. Rev. Lett. 80, 1582.spa
dcterms.referencesCarroll S., 2004. Spacetime and geometry: an introduction to general relativity, Addison Wesley, San Francisco, USA.spa
dcterms.referencesCasimir H. B. G., 1948. On the attraction between two perfectly conducting plates, Indag. Math. 10, 261.spa
dcterms.referencesCharmousis C., Copeland E. J., Padilla A. & Saffin P. M., 2012a. General second order scalar-tensor theory, self tuning, and the Fab Four, Phys. Rev. Lett. 108, 051101.spa
dcterms.referencesCharmousis C., Copeland E. J., Padilla A. & Saffin P. M., 2012b. Self-tuning and the derivation of the Fab Four, Phys. Rev. D 85, 104040.spa
dcterms.referencesChatrchyan S. et. al., [CMS Collaboration], 2012. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716, 30.spa
dcterms.referencesCheng T.-P. & Li L.–F., 1984. Gauge theory of elementary particle physics, Clarendon Press, Oxford, UK.spa
dcterms.referencesChern S.-S., 1945. On the curvatura integra in Riemannian manifold, Ann. of Math. 46, 674.spa
dcterms.referencesCopeland E. J., Padilla A. & Saffin P. M., 2012. The cosmology of the Fab-Four, JCAP 1212, 026.spa
dcterms.referencesEfstathiou G., Hobson M. P. & Lasenby A. N., 2006. General relativity: an introduction for physicists, Cambridge University Press, Cambridge, UK. Einstein A., 1917. Cosmological consideration in the general theory of relativity, Sitz. Preuss. Akad. Wiss. Berlin (Math.Phys.) 1917, 142.spa
dcterms.referencesEinstein A., 1922. The meaning of relativity, Taylor & Francis, London, UK.spa
dcterms.referencesFord L. H., 1987. Cosmological damping by unstable scalar fields, Phys. Rev. D 35, 2339.spa
dcterms.referencesJarosik N. et. al., 2011. Seven-year Wilkinson Microwave Anisotropy (WMAP) observations: sky maps, systematic errors and basic results, Astrophy. J. Suppl. Ser. 192, 14.spa
dcterms.referencesKane G., 1993. Modern elementary particle physics, Addison-Wesley, Massachussets, USA.spa
dcterms.referencesKomatsu E. et. al., 2011. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. Ser. 192, 18.spa
dcterms.referencesLarson D. et. al., 2011. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: power spectra and WMAPderived parameters, Astrophys. J. Suppl. Ser. 192, 16.spa
dcterms.referencesMohideen U. & Roy A., 1998. Precision measurement of the Casimir force from 0.1 to 0.9 μm, Phys. Rev. Lett. 81, 4549.spa
dcterms.referencesNojiri S. & Odintsov S. D., 2005. Inhomegeneous equation of state of the universe: phantom era, future singularity and crossing the phantom barrier, Phys. Rev. D 72, 023003.spa
dcterms.referencesPadilla A., Saffin P. M. & Zhou S.-Y., 2010. Bi-galileon theory I: motivation and formulation, JHEP 1012, 031.spa
dcterms.referencesPadilla A., Saffin P. M. & Zhou S.-Y., 2011. Bi-galileon theory II: phenomenology, JHEP 1101, 099.spa
dcterms.referencesPeccei R. D., Sola J. & Wetterich C., 1987. Adjusting the cosmological constant dynamically: cosmons and new force weaker than gravity, Phys. Lett. B 195, 183.spa
dcterms.referencesPerlmutter S. et. al., 1999. Measurements of Ω and Λ from 42 high-redshift supernovae, Astrophys. J. 517, 565.spa
dcterms.referencesRiess A. G. et. al., 1998. Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116, 1009.spa
dcterms.referencesSola J., 1989. The cosmological constant and the fate of the cosmon in Weyl conformal gravity, Phys. Lett. B 228, 317.spa
dcterms.referencesSola J., 2008. Dark energy: a quantum fossil from the inflationary universe?, J. Phys. A 41, 164066.spa
dcterms.referencesSola J. & Shapiro I. L., 2002. Massive fields temper anomalyinduced inflation, Phys. Lett. B 530, 10.spa
dcterms.referencesSotiriou T. P. & Faroni V., 2010. f(R) theories of the gravity, Rev. Mod. Phys. 82, 451.spa
dcterms.referencesStarobinsky A. A., 1980. A new type of isotropic cosmological models without singularity, Phys. Lett. B 91, 99.spa
dcterms.referencesStefancic H, 2009. The solution of the cosmological constant problem from the inhomogeneous equation of state - a hint from modified gravity?, Phys. Lett. B 670, 246.spa
dcterms.referencesWeinberg S., 1972. Gravitation and cosmology: principles and applications of the general theory of relativity, John Wiley & Sons, New York, USA.spa
dcterms.referencesWeinberg S., 1989. The cosmological constant problem, Rev. Mod. Phys. 61, 1.spa
dcterms.referencesWeinberg S., 1995. The quantum theory of fields, Volume 2: modern applications, Cambridge University Press, Cambridge, UK.spa
dcterms.referencesWeinberg S., 1996. Theories of the cosmological constant, arXiv:astro-ph/9610044.spa
dcterms.referencesWeinberg S., 2008. Cosmology, Oxford University Press, Oxford, UK.spa
dcterms.referencesYoo J. & Watanabe Y., 2012. Theoretical models of dark energy, Int. J. Mod. Phys. D 21, 1230002.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/updatedVersionspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.proposalConstante cosmologicaspa
dc.subject.proposalCosmological constantspa
dc.subject.proposalenergıa oscuraspa
dc.subject.proposaldark energyspa
dc.subject.proposalgravedad modificadaspa
dc.subject.proposalmodified gravityspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume36spa
dc.relation.citationstartpage849spa
dc.relation.citationendpage867spa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.identifier.arkhttps://doi.org/10.18257/raccefyn.36(141).2012.2527-
dc.identifier.eissn2382-4980spa
dc.relation.citationissue141spa
dc.type.contentTextspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
7-Fisica.pdf1.5 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons