Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/2820 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVargas, Rubén A.-
dc.date.accessioned2024-03-04T21:40:08Z-
dc.date.available2024-03-04T21:40:08Z-
dc.date.issued2013-03-01-
dc.identifier.issn0370-3908spa
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/2820-
dc.description.abstractUsando medidas de espectroscopia de impedancias en el rango de las radiofrecuencias en dos tipos de conductores protónicos con estructuras desordenadas, cristales iónicos con enlaces de hidrógeno desordenados (MH2PO4, M = NH4, K) y polímeros sólidos basados en poli alcohol de vinilo (PVOH), se ha investigado la dinámica de protones. Se encuentra que obedecen a similares características en los espectros de la conductividad, permitividad y módulo eléctrico complejos. En efecto, muestran una activación térmica de la conductividad tipo Arrhenius; sus conductividades son descritas a altas frecuencias (ω/2spa
dc.description.abstractUsing impedance spectroscopy measurements in the radio-frequency range in two types of proton conducting materials with disordered structure, ionic crystals with disordered hydrogen bonds (MH2PO4, M = NH4, K) and solid polymers based on poly (vinyl alcohol) (PVOH), the proton dynamics have been investigated. They display similar characteristics of their complex conductivity, permittivity and electric modulus spectra. Both materials show an Arrhenius-type thermally activated dc conductivity; their conductivities aredescribed at high frequencies (w/2p) by a power-law dependencyωn, where 0<n≤1 (Jonscher’s law) and the electric modulus spectra follows in the time domain an exponential decay function , where t is temperature activated and relaxation time, and 0<b<1 describes the slowing down of the relaxation process as a result of proton hopping.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsLa revista de la Academia se distribuye con el modelo de acceso abierto y la licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International con el fin de contribuir a la visibilidad, el acceso y la difusión de la producción científica.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.titleDINÁMICA DEL PROTÓN EN MATERIA CONDENSADA: POLÍMEROS Y CRISTALES IÓNICOSspa
dc.titleEXACTLY SOLVABLE MODELS IN STATISTICAL MECHANICS OF COULOMB SYSTEMSeng
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, maestros y comunidad científica.spa
dcterms.referencesBaranov A.I., Shuvalou L.A., Schagina N.M. (1982). Superionic conductivity and phase transitions in CsHSO4 and CsHSeO4. Journal of Experimental and Theoretical Physics Letters 36:459-462.spa
dcterms.referencesCastillo J., Chacón M., Castillo R., Vargas R. A., Bueno P. R. , Varela J. A. 2009. Dielectric relaxation and dc conductivityon the PVOHCF 3COONH4 polymer system.Ionics15: 537-544.spa
dcterms.referencesCastillo R. 2012. Estudio de relajación dieléctrica en cristales mixtos de (NH4)1-xKxH2PO4. Tesis de doctorado en Ciencias-Física, Universidad del Valle.spa
dcterms.referencesCheca O., Diosa J.E., Vargas R.A., Santamaría J. 2009. Dielectric relaxation of CsHSeO4 above room temperature.Solid State Ionics 180:673-676.spa
dcterms.referencesCheng X., Shi Z., Glass N., Zhang L., Zhang J., Song D., Liu Z.-S., Wang H., Shen J. 2007. A review of PEM hydrogen fuel cell contamination: Impacts, mechanism and mitigation”. Journal of Power Sources 165: 739-756.spa
dcterms.referencesDiosa J. E., Vargas R.A., Albinsson I., Mellander B. E.2004. Dielectric relaxation in single crystal NH4H2PO4 in the high-temperature regime. Solid State Communications132: 55-58.spa
dcterms.referencesDiosa J. E., Vargas R.A., Albinsson I., Mellander B. E. 2005.Dielectric relaxation of KHSO4 above room temperature.Solid State Ionics 176:2913-2916.spa
dcterms.referencesDiosa J. E., Vargas R.A., Albinsson I., Mellander B. E. 2006. Dielectric relaxation in NH4HSO4 above room temperature.Solid State Ionics177: 1107-1110.spa
dcterms.referencesFernández M.E., Delgado I., Diosa J.E. , Vargas R.A. 2005. Thermal and transport properties of the polymer electrolyte base donpoly(vinyl alcohol)-LiOH-H2O. phys. stat sol. (c) 2: 3738-3741.spa
dcterms.referencesFunkeK..Banhatti R.D. 2006.Ionic motion in materials withdisordered structure. Soli State Ionics 177: 1551-1557.spa
dcterms.referencesGoñi-Urtiaga A., Presvytes D., Scott K. (2012). Solids acids as electrolytes materials for proton exchange membrane (PEM) electrolysis: Review. International Journal of Hydrogen Energy 37: 3358-3372.spa
dcterms.referencesHasani-Sadrabadi M. M., Ghaffarian S. R., Mokarram-Dorri N., Dashtimoghadama E., Majedi F. S. 2009.Characterization of Nanohybrid membranes for direct methanol fuel cell applications”. Solid State Ionics 180: 1497-1504.spa
dcterms.referencesJiang S., Lin S., Feng W. (2011). Journal of the Mechanical Behavior of Biomedical Materials 4:1228-1233.spa
dcterms.referencesJonscher A. K. (1966). Universal Relaxation Law. Chelsea Dilectrics Press, London.spa
dcterms.referencesJurado J.F., García A., Vargas R.A. 2000. High Temperature phase transition in K1-x(NH4)xH2PO4. Solid Stae Ionics 136-137: 985-989.spa
dcterms.referencesKreuer K.-D. 1996. Proton conductivity: Materials and Applications. Chemistry of Materials 8:610-641.spa
dcterms.referencesKusoglu A., Karlsson A.M., Santare M. H. (2010). Structure property relationship in ionomer membranes. Polymer 51: 1457-1464.spa
dcterms.referencesLee B.Y., Kim J-K., Kim J-Su., Kim Y.Y. (2009). Quantitave evaluation technique of polyvinyl alcohol (PVOH) fiber dispersion in ingineeredcementius composites. Cement and Concrete Composite 31:408-417.spa
dcterms.referencesLee K-S. (1996). Hidden nature of high- temperature phase transitions on crtistals of KH2PO4- type: is it a physical change? Journal of Physico Chemical Solids 57: 333-342-.spa
dcterms.referencesMatosa B.R., Santiago E.I., Reyb J.F.Q., Ferlautoc A.S., Traversad E., Linardia M., Fonseca F.C. 2011.Nafion based composite elecfion based composite elecon-based composite electrolytes for proton exchange membrane fuel cells operating above 120°C with titania nanoparticles and nanotubes as fillers .Jorunal of Power Sources 196: 1061-1068.spa
dcterms.referencesMorita M., Noborio H., Yoshimoto N., Ishikawa M. 2006.Ionic conductance of composite electrolytes based on network polymer with ceramic powder”. Solid State Ionics 177: 715-720.spa
dcterms.referencesNorby T. (1999). Solid-state proton conductors: principles, properties, progress and prospects. Solid StateIonics125: 1-11.spa
dcterms.referencesPalacios I., Castillo R., Vargas R. A. 2003. Thermal and transport proper-Thermal and transport properties of the polymer electrolyte based on poly(vinyl alcohol)/KOH/H2O. ElectrochimicaActa48: 2195-2199.spa
dcterms.referencesPeighambardoust S.J., Rowshanzamir S., Amjadi M. 2010. Review of the proton exchange membranes for fuel cell applications. International Journal of Hydrogen 35: 9343-9384.spa
dcterms.referencesRam S., Mandal T. K. 2004. Photoluminescence in small isotactic, atactic and syndiotactic PVA polymer molecules in water.Chemicla Physics 303: 121-128.spa
dcterms.referencesRivera A. Santamaría J. and León C. (2001). Electrictrical conductivity relaxation in thin�film ytria�stabizad zirconia. Applied Physics Letters 78: 610-612spa
dcterms.referencesSmolinka T. 2009.Encyclopedia of Electrochemical Power Sources. Freiburg, Germany: Institute for Solar Energy Systems USE, pp 394-400.spa
dcterms.referencesVargas M. A., Vargas R. A., Mellander B-E. 1999. New Proton Conducting Membranes based on PVAL/H3PO2/H2O”. Electrochimica Acta 44: 4227-4232.spa
dcterms.referencesVargas M. A., Vargas R. A., Mellander B-E. 2000. More studies on PVAL+H3PO2+H2O proton conductor gels”. Electrochimica Acta 45:1399-1403.spa
dcterms.referencesVargas R. A., Zapata V.H., Matallana E. and Vargas M.A. 2001. More thermal studies on the PVAL+H3PO2+H2O solid proton conductor gels.Electrochimica Acta 46: 1699-1702spa
dcterms.referencesVargas R.A., Bedoya F., Castillo J. E., Rodríguez L. A. andChacón M.2011.Mechanical Relaxation in polymer electrolyte membranes based on PVOH-H3PO2-ZrO2. Journal of Nanostructured Polymers and Nanocomposites6/3: 87-92.spa
dcterms.referencesWan X., Yucel T., Lu Q., Hu X., Kaplan D-L.(2010). Silk nanosphere and microsphere from silk/PVOH blend films for drug delivery. Biomaterials 31:1025-1035.spa
dcterms.referencesYangC.-C, Wu G.M. 2009.Study of microporous PVA/PVC composite polymer membrane and if application to MnO2 Capacitors”. Materials Chemistry and Physics 114: 948-955.spa
dcterms.referencesYangC.-C.2007. Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC”. Journal of Membrane Science 288: 51-60.spa
dcterms.referencesYangC.-C., Lin C.-T., Chiu S.-J.2008. Preparation of the PVA/HAP composite polymer membrane for alkaline DMFC application”.Desalini sation233 (2008) 137-146.spa
dcterms.referencesYang C-C.(2006). Study of alkaline nanocomponent polymer electrolytes based on PVA-ZrO2-KOH.Materials Science and Engineering B 131:256-262.spa
dcterms.referencesYang C-C.(2007). Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC. Journal of Membrane Science 288:51-60.spa
dcterms.referencesYuan X.-Z., Li H., Zhang S., Martin J., Wang H. 2011. A review of polymer electrolyte membrane fuel cell durability test protocols.Journal of Power Sources 196: 9107– 9116.spa
dcterms.referencesZapata V.H., Castro W.A., Vargas R.A., Mellander B.-E. 2007. More studies on the PVOH–LiH2PO4 polymer system. Electrochimica Acta 53: 1476–1480.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/updatedVersionspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.37(142).2013.2536-
dc.subject.proposalPolímerosspa
dc.subject.proposalPolymerseng
dc.subject.proposalCristales iónicosspa
dc.subject.proposalIonic crystalseng
dc.subject.proposalDinámica protónicaspa
dc.subject.proposalProton dynamicseng
dc.subject.proposalRelajación eléctricaspa
dc.subject.proposalElectrical relaxationeng
dc.subject.proposalComportamiento universalspa
dc.subject.proposalUniversal behavioreng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume37spa
dc.relation.citationstartpage495spa
dc.relation.citationendpage504spa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.identifier.eissn2382-4980spa
dc.relation.citationissue142spa
dc.type.contentTextspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
6-Fisica Dinámica del Protón.pdf1.2 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons