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Un funtor covariante ∆ → A se dice un objecto modelo de A. Los objetos modelo
producen en A un tema de estudio muy parecido a la topoloǵıa algebraica cuando A es la
categoŕıa de los espacios topológicos. En este trabajo se describen los escenarios en los cuales
se desarrollan estos conceptos y las principales resultados desarrollados por el autor sobre
objetos modelos.
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Abstract

A covariant functor ∆ → A is called a model object of A. Model objects produce in
A a subject matter very much as algebraic topology when A is the category of topological
spaces. Here we describe the settings on which such concepts are developed and describe
the main features developed by the author about model objects.
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1. Model, closed model, and pre-model cate-
gories
By a model category (Daniel Quillen [QD67]) we mean
a category A together with three distinguished classes
of morphisms F (fibrations), C (cofibrations) and WE
(weak equivalences) such that:

M.0. Axiom of admissibility: A is closed under finite
projective and inductive limits.

M.1. Lifting axiom: Given a solid arrow diagram in A,
where i is a cofibrations and p is a fibration and
where either i or p is a weak equivalence, then the
dotted arrow exists.

X Y

p

K

i

Z

M.2. Factorization axiom: Any morphism f in A can
be factored f = pi where i is a cofibration and
weak equivalence and p is a fibration. Also f = pi
where i is a cofibration and p is a fibration and a
weak equivalence.

M.3. F is closed under composition, base change and
any isomorphism is a fibration. C is closed under
composition, cobase change and any isomorphism
is a cofibration.

M.4. The base extension of a morphism which is a fibra-
tion and weak equivalence is a weak equivalence.
The cobase extension of a map which a cofibration
and weak equivalence is a weak equivalence.

M.5. Triangular axiom: If in a commutative diagram

YX

Z

two of the morphisms are weak equivalences so is
the third.

If (A, F, C,WE) is a model category, then there exis-
ts an associated category, called the homotopy category
of (A, F, C,WE) denoted simply by H◦A which is the
localization of A with respect to WE. H◦A is charac-
terized by the existence of a functor r : A → H◦A and
the following universal property of (r,H◦A): for every
f ∈WE, r(f) is an isomorphism. If there exists another
pair (F,B), F : A → B such that for every f ∈ WE,
F (f) is an isomorphism then, there exists a unique func-
tor ρ : H◦A → B such that ρr = F .

Note that in general, if r(f) is an isomorphism, f need
not be a weak equivalence. There is however, a special
kind of model category in which r(f) is an isomorphism
if, and only if f is a weak equivalence. They are called
closed model categories. Before we define them, we give
some notation: In a model category a morphism which is
both a fibration and a weak equivalence is called a triv-
ial fibration. TF denotes the class of such morphisms.
A morphism which is both a cofibration and a weak
equivalence is called a trivial cofibration, TC denotes
the class of such maps. We call the classes F , C, TC,
TF and WE the classes of structural maps of the model
category.

From our point of view, the main feature of closed
model categories is that, with the exception of WE, the
classes of structural maps are characterized by lifting
properties: PM2 in next definition.

On the other hand one can also have “almost” model
categories which fail to be model because WE fails to
behave well. They are “pre model categories”.

By a pre-model category, (Roberto Ruiz, [RR76]) we
mean a category A together with five classes of maps F ,
C, TF , TC and WE such that:

P.M.1. TF ⊆ F and WE = TF ◦ TC (i.e. a map is a
weak equivalence if and only if it factors as a triv-
ial cofibration followed by a trivial fibration).

P.M.2. F , C, TF , TC admit the following characteriza-
tion by liftings.

i f is a fibration if and only if f has right lifting
property with respect to TC.

ii f is a trivial fibration if and only if f has right
lifting property with respect to C.

iii If f has left lifting property with respect to
TF , then f is a cofibration.

iv If f has left lifting property with respect to
F , then f is trivial cofibration.

P.M.3 Any map f admits two factorizations:

YX

K

h i

f
and YX

K'

h' i'

f

where h is a cofibrations and i is a trivial fibration
and h′ is a trivial cofibration and i′ is a fibration.

Remarks:

i i and ii implies that iii and iv in P.M.2 become
equivalences.
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ii Any isomorphism belong to each one of the classes
F , C, TF , TC (P.M.2) and hence to WE.

iii F , C, TF , TC are closed under composition and
retracts.

iv TC ⊆ C, and furthermore TF = F ∩ WE and
TC = C ∩WE.

v Let
X Y

f

K

f

Z

be a Cartesian square in A. If f is a fibration
(resp. trivial fibration) so is f . Let

X Y

f

K

f

Z

be a cocartesian square in A. If f is a cofibration
(resp. a trivial cofibration) so is f .

vi F ∩ C ∩WE = isomorphisms of A.

Thus a pre model category have good behavior in
liftings (as good as in closed model categories) but bad
behaved WE: it only goes up to containing all isomor-
phisms and factorization WE = TF ◦ TC.

The “closure” of a model category is define as follows
[RR77]: given a model category (A, F, C,WE) there ex-
ists a unique pre model category (A, F , C, TF , TC,WE)
such that F ⊆ F , C ⊆ C, TF ⊆ TF , TC ⊆ TC and
WE ⊆ WE. This pre model category measures the ex-
tent in which a model category is a closed model cate-
gory. It is proved that when the original model category
is closed, it coincides with its closure. The closure can
also be viewed as “the theory of liftings” of the model
category. The uniqueness of the closure is implied by
the following fact, meaningful in itself. If A is a class
of morphisms in A and we denote by [A] the class of all
retracts of members of A, then one has that F = [F ],
C = [C], TF = [TF ], TC = [TC].

Hence a model category is closed if and only if the
classes F , C, TF , TC (or equivalently F , C, WE) are
closed under retracts. In pre model, model and closed
model categories a “cylinder” object (resp. “path” ob-
ject) of A is a diagram as the next first (resp. second)

one.

i0

A

i0

A

C A

1A

1A

e
0

A

A

A P

1A

1A

e
1

C is the “actual” cylinder object of A, ij (j=0, 1) are
trivial cofibrations (which are usually inclusions) and P
is the actual “path object” of A and Cj are trivial fi-
brations (which usually are evaluation functions). Then
one has for f, g : A→ B that f is “left homotopic” to g
if there exists a cylinder of A and h : C → B such that
h ◦ i0 = f and h ◦ i1 = g. The dual procedure provides
“right homotopy”. If the map φ → A (φ initial object)
belongs to C (A is a “co fibrant object”) then left homo-
topy is an equivalence relation on Hom(A,B) and left
homotopy implies right homotopy [QD67]. Since dual
assertions hold, right and left homotopy coincide and
are equivalence relations on Hom(A,B) when A is co
fibrant and B is fibrant.

Elsewhere homotopy is done through homotopy sys-
tems: Let A be a category. A homotopy system (Kan,
[KD55,58]) Z = (I, J0, J1, q) consists of the following:

i A “cylinder” covariant functor I : A → A.
ii Three natural transformations J0 : 1A → I, J1 :

1A → I, q = I → 1A such that qJ0 = qJ1 = 1.

Homotopy is then given as follows: Let f, g : X → Y
be morphisms and A. We say that f is homotopic to g,
denoted f ∼= g, if there exists a morphism ρ : I(X)→ Y
in A such that ρ ◦ J0(X) = f and ρ ◦ J1(X) = g.

The homotopy relation as defined is not in general
an equivalence relation. But it is reflexive and compat-
ible with composition: if f, g : X → Y , h : Y → Z,
k : K → X then f � g, implies that hf � hg and
fk � gk.
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If ∼ denotes the equivalence relation generated
by �, then one has the following definition: Let
f : X → Y a morphism in A. We say that f is a homo-
topy equivalence if [f ] ∈ A(X,Y )/ ∼ is an isomorphism
in Mor A/ ∼.

Fibrations and cofibrations for a homotopy system
are given in Kamps [KK69]. We will provide now exam-
ples of homotopy systems. The most common ones are
given in categories with final object different from the
initial one, if it exists. We will denote by ∗ the final
object and by ∅ the initial one.

If A is a category, then say that A is pointed if ∗ ∼= ∅.
Otherwise is unpointed. Let A be unpointed. For an ob-
ject A of A the morphisms ∗ → A are called the points
of A and A(∗, A) is called the underlying set of A. In
unpointed categories there are plenty of homotopy sys-
tems. In fact, Let A be an unpointed category closed
for finite products. Let X be an object of A and x0, x1

(if that order) points of X. Then there exists a natural
isomorphism ι : 1A → 1A×∗, and the bimap I : A → A,
A 
→ A × X, f 
→ f × 1X is a covariant functor. Fur-
ther, di(A) : A ιA→ A × ∗ 1A×Xi→ A × X, for i = 0, 1
and π1 : A × X → A are natural transformations on
A ∈ ObjA and π1 ◦ di(A) = 1A. Thus (I, d0, d1, s) is a
homotopy system on A.

Normal homotopies in the categories of topological
spaces Top and simplicial sets ∆◦S are of this kind, the
first one induced by {I = [0, 1], 0, 1} and the second by
{∆[1], ε0, ε1} where εi : [0] → [1], 0 
→ i induce simpli-
cial points (still denoted by ε0, ε1) on the second. We
assume the reader familiar with them.

Let Z = (I, J0, J1, q) be a homotopy system in A.
We say that a map F : E → B is a fibration (or a Z
fibration) if f has the right lifting property with respect
to J0 i.e. to the class of maps J0(X) : X → I(X),
X ∈ ObjA. A map i : A→ X is called a (Z) cofibration
if for any commutative diagram.

A I( A )

Y

i

X
f

J ( A )0

there exists a homotopy ϕ : I(X) → Y such that
ϕI(i) = g and ϕJ0(X) = f .

One has the following properties for fibrations and
cofibrations in a homotopy system [KK69]: Isomor-
phisms are fibrations and cofibrations. Projections are
fibrations. Fibrations are closed under composition,
base extension, and retracts. Cofibrations are closed
under composition, co-base extension, and retracts.

2. Simplicial Systems, category, functor

We change a little Quillen’s version of simplicial ca-
tegories [QD67] to the notion of simplicial systems in a
given category. The reason is that, as we will see, there
may be more than one way in which a category is a
simplicial category. For us then a “simplicial category”
will be a pair formed by a category and a “simplicial
system”.

Let A be a category. By a simplicial system in A we
mean a functor HomA : A × A → ∆◦S such that the
following conditions hold:
S.1. For any objects X, Y , Z of A there exists a “com-

position” (simplicial) map:

HomA(X,Y )×HomA(Y, Z)→ HomA(X,Z)

level wise denoted by (f, g) 
→ g ◦ f , which is as-
sociative in the sense that, if f ∈ HomA(X,Y )n,
g ∈ HomA(Y, Z)n, and h ∈ HomA(Z,K)n, then
(h ◦ f) ◦ g = h ◦ (f ◦ g).

S.2. There exists a natural isomorphism

λ : A( , )→ [HomA( , )]0

denoted by A(X,Y ) → (HomA(X,Y ))0; u 
→∼
u

such that if u ∈ A(X,Y ), f ∈ HomA(Y, Z)n and
g ∈ HomA(W,X)n then

sn
0 (u) = HomA(u, Z)n(f)

and

sn
0 (u) ◦ g = HomA(W,u)n(g)

where (abusing notation) sn
0 denotes the composi-

te of the (in general different) functions

HomA(X,Y )p
s0→ HomA(X,Y )p+1

for p = 0, 1, . . . , n− 1

By a simplicial category we mean a pair (A, HomA)
where A is a category and HomA is a simplicial system
on A. As for functors among them:

Let (A, HomA) and (B,HomB) be two simplicial ca-
tegories. By a simplicial functor

F : (A,HomA)→ (B,HomB)
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we mean a functor F : A → B together with maps

HomA(X,Y )→ HomB(F (X), F (Y )); f 
→ F (f)

such that F (f ◦ g) = F (f) ◦ F (g) and F (
∼
u) =

∼
F (u). We

say that F is strictly simplicial if the maps

HomA(X,Y )→ HomB(F (X), F (Y ))

define a natural transformation (denoted again by F ).

F : HomA → HomB(F × F )

Since the simplicial functors that we will use are al-
ways strictly simplicial we will talk simply of “simplicial
functors” and refer to the “strict” part only when spe-
cially necessary.

Simplicial categories have cylinders and path objects:
Let (A, HomA) be a simplicial category. Let X be an
object of A and K a simplicial set.

i By a cylinder object associated to (X,K) we mean
a pair (X ⊗K,α) where X ⊗K is an object of A
and

α : K → HomA(X,X ⊗K)

is a simplicial map such that for each Y in A the
simplicial map

ϕ : HomA(X ×K,Y )→ (HomA(X,Y ))K

next defined is an isomorphism: ϕn has domain
HomA ( X ⊗ K, Y )n, codomain ∆◦ S ( K ×
∆[n], HomA(X, Y )) and ρ 
→ (o)◦(α×1)◦(1×ρ).
More explictly the image of ρ is the composi-
tion of the maps: 1×ρ with domain K×∆[n],
and codomain K × HomA(X ×K,Y ); α × 1 has
domain K × HomA(X × K,Y ), and codomain
HomA(X,X ⊗ K) × HomA(X ⊗ K,Y ); o with
domain HomA(X,X ⊗ K) × HomA(X ⊗ K,Y ),
and codomain HomA(X,Y ) where

ρ : ∆[n]→ HomA(X ⊗K,Y )

is the simplicial map associated to ρ, namely the
unique simplicial map such that ρ(l[n]) = ρ.

ii By a path object associated to (X,K) we mean
a pair (XK , β) where XK is an object of A and
β : K → HomA(XK , X) is a simplicial function
such that the induced map.

ψ : HomA(Y,XK)→ HomA(Y,X)K

described below is an isomorphism: ψn with do-
main HomA (Y,XF )n, and codomain

(K ×∆[n], HomA(Y,X)),

where

ρ 
→ (o) ◦ (Pr2, P r1) ◦ (1× ρ)
i.e. the image of ρ is the composition of the maps:
1 × ρ with domain K × ∆ [ n ], and codomain
K×HomA(Y, XK ); (Pr1, P r2) with domain K×
HomA(Y,XK), and codomain HomA(Y,XK) ×
HomA(XK , X); o with domain HomA(Y,XK)×
HomA(XK , X), and domain HomA(Y,X)

Let (A, HomA) be simplicial category. Let X be an
object of A and K, L simplicial sets. There are canon-
ical isomorphisms X ⊗ (K × L) ∼= (X ⊗ K) ⊗ L and
(XK)L ∼= XK⊗L when all of the objects involved are
defined.

Recall that the homotopy relation on simplicial sets
in general is not an equivalence relation. We denote by
� the homotopy relation in ∆◦S and by ∼ the equi-
valence relation induced by �. Recall further that the
functional simplicial set associated to spaces X and Y
(where the idea of simplicial categories was taken from)
is the simplicial set Hom(X, Y ) whose n-th level is gi-
ven as follows: ∆ denotes the cosimplicial space with
∆n = {(x0, ..., xn) ∈ Rn+1 | xi ≥ 0,

∑
xi = 1} the co

faces δi : ∆n → ∆n+1 is the function that adds 0 in the
i-th coordinate and ρi : ∆n → ∆n−1, xi + xi+1 in the
i-th coordinate. ∆ will be called “the standard model”
in Top. Now, back to Hom(X,Y ) we take

Hom(X,Y )n = Top(∆n ×X,Y )

faces and degeneracies induced by those of ∆. It is clear
that

Hom(X,Y )0
∼= Top(X,Y )

and is well known that two maps f, g : X → Y are
homotopic in Top if as members of Hom(X,Y )0 they
are homotopic. The generalization of this situation to
simplicial categories is as follows: Let (A, HomA) be a
simplicial category, f, g : X → Y be morphisms in A.
We say that f is strictly homotopic to g, and denote it
f � g, if their images f , g ∈ HomA(X,Y )0 are homo-
topic i.e. if f � g. We say that f is homotopic to g,
denoted f ∼ g if f ∼ g in HomA(X,Y ). We denote
π0(HomA(X,Y )) by π0(X,Y ). The category π0A is de-
fined as having as objects those of A and for each pair
X, Y of ObjA = (Objπ0A).

π0A(X,Y ) = π0 [HomA(X,Y )]

with composition induced by the one in A.

The existence of path and cylinder objects provi-
des a nice representation of HomA(X,Y ). In fact if
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(A, HomA) is a simplicial category and B is a subca-
tegory of ∆◦S, then we say that A admits a cylinder
through B if there exists a functor A×B → A such that
for each X ∈ A and K ∈ B the image of (X,K) is a
cylinder object of X in A, say

X

d
1

X

X K� X

1X

1X

d
0

s

We say that A admits paths through B if there exists
a functor A × B◦ → A such that for each X ∈ A and
K ∈ B the image of (X,F ) is a path object of X in A
say

X

X

X X
K

1

D1

D0

s

Now we consider ∆ : ∆ → ∆◦S, the standard mo-
dels of ∆◦S. On it ∆n = ∆[n] is the simplicial set
with ∆[n]m the set of increasing functions [n] → [m]
where [p] = {0, 1, ..., p}. di : ∆[n]m → ∆[n]m−1 maps
α : [m] → [n] in α ◦ δi where δi : [m − 1] → [m] is
the 1− 1 and increasing function which misses i in [m].
Further ρj : ∆[n]m → ∆[n]m+1 maps α in α ◦ ρj where
ρj : [m+ 1]→ [m] is the onto increasing function which
repeats j in [m]. ∆[n] is thus a simplicial set. The
∆[n]’s form a cosimplicial object of ∆◦S whose n-th le-
vel is ∆[n], di

p : ∆[n]p → ∆[n+1]p sends α in δi ◦α and
sj

p : ∆[n]p → ∆[n− 1]p sends α in ρj ◦α. One thus have
that ∆[n], di : ∆[n]→ ∆[n+1] and sj : ∆[n]→ ∆[n−1]
conform a cosimplicial object of ∆◦S, “the model of the
simplicial ∆[n]’s”.

We denoted by ∆ again the image ∆(∆) which is a
subcategory of ∆◦S.

Suppose that A admits cylinders through ∆. Then
for each X ∈ A there exist a composition functor
∆ → A×∆ → A with [n] 
→ X ⊗∆[n] and

(w : [n]→ [m]) 
→ (1X ⊗ wX : X ⊗∆[n]→ X ⊗∆[m])

This composition is a cosimplicial object of A. Similarly
if A admits paths through ∆, then for each X ∈ A one

has a simplicial object of A, ∆ → A × ∆ → A with
[n] 
→ (X,∆[n]) 
→ X∆[n] and

(w : [n]→ [m]) 
→ (1X , w
∗) 
→ (Xw∗

: X∆[m] → X∆[n]).

One uses these two object to prove the following.

Suppose A admits cylinders through ∆. Then for
each pair X, Y of objects of A, HomA(X,Y ) is (up
to isomorphism) the simplicial set whose n-th level is
HomA(X,Y )n = A(X ⊗ ∆[n], Y ). Suppose A admits
paths through ∆. Then for each X, Y objects of A,
HomA(X,Y ) is (up to isomorphism) the simplicial set
whose n-th level is

HomA(X,Y )n = A(X,Y ∆[n])

Therefore in case A admits cylinders through ∆, ho-
motopy in A is a left homotopy. For f, g : X → Y
morphisms of A, f ∼ g if and only if there exists a mor-
phism H : X ⊗ ∆[1] → Y such that H ◦ d1 = f and
H ◦ d0 = g.

Similarly when A admits paths through ∆, homo-
topy in A is a (right) homotopy: f ∼ g if and only if
there exists a morphism T : X → Y ∆[1] in A such that
d1 ◦ T = f and d0 ◦ Tg.

Of course when A admits path and cylinders through
∆, homotopy inA is given by the (then) equivalent ways
above.

We present now in some detail the most typical
example of a “model object” at work which at long last
produces a model category. Then we introduce its gene-
ralization to “model object” (or simply “model”) and
show that they produce pre model categories. In order
to deal with the difference (from model to pre model
categories) we work the missing parts (homotopy) by
means of the homotopy system of its simplicial system.

3 Kan Fibrations and Trivial Fibrations

Let X be a simplicial set. Let n ∈ N∗. By a (sim-
ple) n−box we mean a subset {x0, . . . ,

∧
xk, . . . , xn} of

Xn, (where
∧
xk means that there is no element indexed

on k), such that for each pair i, j = 0, 1, 2, . . . , n+ 1, if
i < j then dixj = dj−1xi. By a trivial n−box of X we
mean a subset {x0, . . . , xn+1} of X such that for each
pair i, j = 0, 1, . . . , n+ 1 with i < j then dixi = dj+1xi.

The equalities dixj = dj−1xi for simple and trivial
boxes will be refereed to as the compatibility relations
of the xi’s. They are fulfilled emptily for n = 0. So
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0−boxes of X are subsets of X0 with one element, and
trivial 0−boxes, pair (x0, x1), x0 not necessarily diffe-
rent from x1.

Let S = {x0, . . . ,
∧
xk, . . . , xn} (respectively, S′ =

{x0, . . . , xn+1}). We say that x is a filler of S (resp.
of S′) if for each i = k, di(x) = xi (resp. for each i,
di(x) = xi).

If f : X → Y is a simplicial function and S =
{x0, . . . ,

∧
xk, . . . , xn+1} is a box in X (resp.

S′ = {x0, . . . , xn+1} is a trivial n−box in X) then
f(S) = {f(x0), . . . f(xn+1)} is an n−box in Y , (resp.
f(S′) is a trivial n−box in Y ).

Let f : X → Y be a simplicial map. f is said to
be a Kan fibration if given any n−box S such that the
image box f(S) admits a filler y ∈ Yn+1, then there ex-
ists a filler x ∈ xn+1 of S, such that fn+1(x) = y. f
is said to be a trivial fibration if f0 is onto and if given
a trivial n−box S in X such that f(S) admits a filler
y ∈ Yn+1, then there exists a filler x ∈ xn+1 of S such
that f(x) = y.

A simplicial set X is called a Kan complex (also is
said to be (Kan) fibrant, or to have Kan extension con-
dition) if the simplicial function X → ∗ (where ∗ is any
simplicial point) is a Kan fibration.

Let X be a simplicial set and x ∈ Xn. Recall that
there exists a unique simplicial map

∼
x: ∆[n] → X such

that,
∼
x (1[n]) = x. It is clear that if f : X → Y is

a simplicial map, then f◦ ∼
x=

∼
f(x).One also have that

∼
x ◦di =

∼
di(x) and

∼
x ◦sj =

∼
sj(x).

We call a set {a0, . . .
∧
ak, . . . , aj} = S with aj :

∆[n]→ X a functional n−box in X if aj ◦di = dj−1 ◦ai,
for i < j i, j = k. When ak is not omitted we call the
set a trivial functional n−box in X. If X

f→ Y , then we

denote by f(S) = {f ◦ a0, . . . ,
∧

f ◦ ak, . . . , f ◦ an+1} the
functional n−box image of S.

We call ∆[n + 1] a→ X a filler of S if a ◦ di = aj for
i = k. Similarly for a trivial functional n−box.

Fibrations and trivial fibrations can be given
by means of functional boxes: f is a Kan fibration if
and only if for each functional n−box S whose image
f(S) admits a filler b, there exists a filler a of S such
that f ◦ a = b. f is a trivial fibration if and only if f0
is onto and for each functional trivial n−box S whose
image f(S) admits a filler b there exists a filer a of S

such that f ◦ a = b. One can produce trivial boxes from
standard ones. A simple but tedious proof can be sup-
plied for the following: if S = {x0, . . . ,

∧
xk, . . . xn+1} is

an n−box (n ≥ 1) in a simplicial set X, then the set
{x0, . . . , xn} ⊆ Xn−1 defined by

xi =
{
dk−1(xi) if i < k
dk(xi+1) if i ≥ k

is a trivial n−1 box in X, which we denote by dk(S).

If S = {x0, . . . ,
∧
xk, . . . xn+1} is a trivial n−box, such

that dk(S) admits a filler x, then

{x0, . . . , xk+1, . . . xn+1}
is a trivial n−box.

It can be seen that any trivial fibration is a Kan fibra-
tion. Then one have a pre model category as follows: F
is the class of Kan fibrations, TF is the class of trivial
fibrations, C (resp. TC) is the class of maps with left
lifting property for TF (resp. F ) and WE (weak equiv-
alences) is TF ◦TC. Quillen [QD67] proves that in fact
F , C, WE is a closed model structure in ∆◦S, that is
(∆◦S, F,C,WE) is a closed model category.

The use of maps of the kind ∆[n] → X on the theo-
rems allows us to generalize the concepts of fibrations,
trivial and Kan complexes changing maps ∆[n] → X
to maps Y n → X where Y : ∆ → ∆◦S is
a covariant functor. The version by boxes of the kind
{x0, . . . ,

∧
xk, . . . xn+1} and {x0, . . . , xn+1} will be use-

ful in order to relate the generalization through Y with
the standard theory.

Now we provide the generalization of the concept of
fibrations to get fibrations and trivial fibrations associa-
ted to a functor Y : ∆→ A.

We reestablish in detail the general definitions so as
to point out how the standard theory is in fact a par-
ticular case of the theory induced by Y . Before we com-
plete the pre model category associated to Y we give
the counterpart (for Y ) of the theorems in the previous
paragraph of fibrations and trivial fibrations (when ∆
was used).

Next we show how these two concepts, Y fibrations
and Y trivial fibrations, can be characterized (as well
as some of their properties) by the use of the singular
functor SY : A → ∆◦S associated to Y . Finally we
complete the pre model category associated to Y .
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4. Y fibrations and Y Trivial Fibrations

The generalizations of the concepts of boxes, trivial
boxes and fillers can be given as follows.

Definition:
i Let X be an object of A. By a simple Y n box

(or a Y n box) in X we mean a family of maps
{ a0, . . . , âk, . . . , an+1 }, 0 ≤ k ≤ n + 1, where
ai : Y n → X is such that if i < j, i, j = k, then
aj ◦ di = ai ◦ dj−1, di, dj−1 : Y n−1 → Y n.

ii By a trivial Y n box for n ≥ 1 we mean a family
{a0, . . . , an+1} of maps ai : Y n → X such that
aj ◦ di = ai ◦ dj−1 if i < j, then aj ◦ di = ai ◦ dj−1.
A trivial Y 0 box is a family {a0, a1}, ai : Y 0 → X.

iii Let S = {a0, ...,
∧
ak, ..., an+1} be a Y n box (resp.

S′={a′0, . . . a′n+1} be a trivial Y n box). By a filer
of S (resp. S′) we mean a map a : Y n+1 → X such
that for each i = k (resp. for each i) the following
diagram commutes

X

d
i

Y
n+1

a

Y

ai

If f : X → Y is a simplicial map and if S =
{a0, . . . ,

∧
ak, . . . , an+1} is a Y n box in X then it is clear

that {fa0, . . . , f
∧
ak, . . . , fan+1} is a Y n box in Y . Si-

milarly the Y n box (resp. trivial Y n box) of the fai’s
will be called the image of S by f and will be denoted
in both the simple and trivial case by f(S).

We require Y to have the following property : Let
Kn+1 be any set formed with at least n− 1 of the maps
di : Y n → Y n+1 in A. Then for any Kn+1 there exists
an object B on A and a map j : B → Y n+1 such that
each equation j ◦X = di has solution (denoted di|) and
further if B′ and j′ : B′ → Y n+1 admit solutions to
j′ ◦X = di then there exists a unique H : B → B′ such
that j′ ◦H = j.

Thus j is unique up to isomorphism. When in Kn+1

the map dk is missing we denote j by i : Y [n + 1, k] →
Y n+1 and when Kn+1 = {d0, d1, . . . , dn}, j is denoted
by i : δY n+1 → Y n+1.

When di : Y n → Y n+1 have underlying functions
(and Y n underlying set) then

Y [n+ 1, k] =
⋃
i�=k

di(Y n) and δY n+1 =
n⋃

i=0

di(Y n)

Of course in general there exist a unique

ik : Y [m+ 1, k]→ δY n+1

such that (abusing the notation) i ◦ ik = i.

i Let f : X → K be a map in A. We say that f is a
Y fibration if given any Y n box S such that f(S)
admits a filler b, then there exists a filler a of S
such that fa = b.

ii f is said to be a Y trivial fibration if for any trivial
Y n box whose image f(S) admits a filler b, there
exists a filler a of S such that fa = b. Further-
more f has “the Y 0 lifting property” i.e. for any
b : Y 0 → K there exists a : Y 0 → X such that
fa = b.

iii X is Y Kan complex (resp. F trivial complex ) if
X → ∗ is a Y fibration (resp. Y trivial fibration).

Consider a family {a0, . . . ,
∧
ak, . . . , an+1} = S,

ai : Y n → X (n ≥ 1). Then S is a Y n box (resp. a
trivial Y n box) iff there exists a map (filler)

Y [n+ 1, k] a→ X (resp. a : δY n+1 → X)

such that for each i = k then a ◦ di |= ai. The family
{a0, ..., an+1} is a trivial Y n box if there exits a map
a : δY n → X such that a ◦ di = ai for each i.

The effect on Y fibrations and Y trivial fibrations is
the following:

Let f : X → K be a map on A. Then f is a
Y fibrations (resp. Y trivial fibration) iff f has right
lifting property with respect to inclusions of the kind
Y [n, k] i→ Y n, n ≥ 1 and 0 ≤ k ≤ n. (resp. δY n → Y n,
n ≥ 0).

Note that X is a Y Kan complex iff every Y n box
admits a filer. Furthermore X is an F trivial complex
iff every trivial Y n box admits a filler.

Recall that given Y : ∆ → A, there exists associa-
ted to it the singular functor SY : A → ∆◦S, given
by (SY (X))n = A(Y n, X) which gets faces and de-
generacies from the ones of Y by composition, and if
f : X → K then SY (f) is the simplicial functions
whose n-th level is given by (SY (f))n(a) = fa. Note
that SY (X) is a simplicial set and that the elements of
(SY (X))n are the kind of maps Y n → X we have used
to define Y n boxes and trivial Y n boxes.

Similarly fillers on Y n boxes, trivial of otherwise, are
fillers in the corresponding simplicial set SY (X). It is
rather simple to verify also, that f : X → K has the Y 0
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lifting property if and only if (SY (f))0 is onto. One gets
then the following results.

Let f : X→K be a A map: f is a Y fibration if and
only if SY (f) is a Kan fibration. f is a Y trivial fibra-
tion if and only if SY (f) is a trivial fibration. Finally,
any Y trivial fibration is a Y fibration.

5. Completing the pre model category associated
to Y

Now we complete the Y structure on A. To Kan
fibration and trivial fibration one adds the following de-
finition:

i A map f : X → K is called a Y trivial cofibration
if it has left lifting property with respect to the
class of Y fibrations.

ii f is called a Y cofibration if it has left lifting pro-
perty with respect to the class of Y trivial fibra-
tion.

iii f is called a Y weak equivalence if it factors as
j ◦ h where h is a Y trivial cofibration and j is a
Y trivial fibration.

From these classes of maps we are primarily concerned
with fibrations, cofibrations and weak equivalences.

In what follows we will give conditions under which
this five classes of maps form a pre model structure in
A. Thus far we have:

i The following classes of maps are closed under
composition and contain all of the isomorphism
of A: Y -fibrations, Y trivial fibrations, Y cofibra-
tions, Y trivial cofibrations.

ii The base extension of a map which is a Y fibration
(resp. Y trivial fibration) is again a Y fibration
(resp. a Y trivial fibration) The co base extension
of a map which is a Y cofibration (resp. a Y triv-
ial cofibration) is again a Y cofibration (resp. a Y
trivial cofibration).

iii The classes of Y fibration, Y trivial fibration, Y
cofibration, and Y trivial cofibrations are closed
under retracts.

iv Suppose a map X f→ Y factors as k ◦ h with h a Y
trivial cofibration and k a Y fibration (resp. with
h a Y cofibration and k a Y trivial fibration). If f
has right lifting property for Y trivial cofibrations,
then f is a Y fibration. (resp. if f has right lifting
property for Y cofibrations, then f is a Y trivial
fibrations).

If the factorization axiom holds for the Y structure
then: f is a Y fibration if and only if it has right lifting
property for Y trivial cofibrations. Also f is a Y trivial
fibration if and only if it has right lifting property with
respect to Y cofibration.

As we have mentioned in a model category the prefix
“trivial” has special meaning which for the Y structure
is still valid. In fact f is a Y trivial fibration if and only
if f is a Y fibration and a Y weak equivalence.Also f is
a Y trivial cofibration if and only if is a Y cofibration
and Y weak equivalence.

Thus so far the following axioms for model and closed
model hold for the classes of structural maps associated
to Y ; for model categories: M.0, M.1, M.3, M.4. For
closed model categories: C.M.1, C.M.4 and partially
C.M.3: Y − F , Y − TF , Y − C are closed under re-
tracts.

Now we want to give conditions on Y so that the fac-
torization axiom hold. From the remark of proposition
2.24 it will follow as well that the classes of structural
maps associated to Y form a pre model category.

6. Smallness and the factorization axiom

The concept of smallness that we use here is actually
the sequential one used by Quillen [QD67] as well as the
procedure to build up factorization of maps whenever
there exists a family {Ai → Bi} with the Ai small. A
more refined version can be found in RR94.

Let A be an object of A. We say that A is small if

Hom(A, lim→ Zm) = lim→ Hom(A,Zm)

for any family {Zm}, m ∈ N. More precisely, A is small
if for any sequence Z0 → Z1 → Z2 → . . . of maps and
for any α : A → limZn, there exits m ∈ N and a map
α : A→ Zn such that j ◦ α = α.

Let Y : ∆ → A be a covariant functor. We say that
Y is small if for each n ∈ N

∗, Y n is small.

The cosimplicial character of Y implies smallness of
some subobjects of the Y n’s whenever Y is small. In
fact let I ⊆ [n] = {0, 1, . . . , n}. Then Y [n, I] is small.
In particular Y [n, k] and δY n are small.

Notice also that if A is small and B is retract of A in
the usual sense i.e. there are maps B

ρ→ A and A
η→ B

such that ηρ = 1B, then B is also small.

Here are some examples of small Y ’s.
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i ∆ is obviously small i.e. for each n ∈ M , ∆[n] is
small. Hence so are ∆[n, k] and δ∆[n].

ii If Y is small then for any n ∈ N , the object ob-
tained by dropping the first n levels and last n co-
faces and co-degenacies, RCn(Y ), is small. Hence
in particular RC(n)(∆) is small for any n ∈ N .

iii If Y is small then the functor RY : ∆◦S → ∆◦S,
left adjoint of SY : ∆◦S → ∆◦S, send small ob-
jects into small object. That follows since SY com-
mutes with sequential direct limits. Even more: Y
is small if and if SY commutes with sequential di-
rect limits.

We establish now the general situation implied by
smallness about factorization of arrows.

Proposition: Let A = {Ai → Bi | i ∈ I} be a family
of maps in A. If for each i ∈ I, Ai is small, then any
map f : X → Y factors as f = k ◦h where h and k have
the following properties.

i h has the left lifting property for the class of maps
with right lifting property for A.

ii k has right lifting property for A.

Thus if Y : ∆→ A is small then any map f : X → K
factors in two ways: f = k ◦ h with h ∈ Y − C and
k ∈ Y − TF and also as f = k′ ◦ h′ with h′ ∈ Y − TC
and k′ ∈ Y − F . That is to say, if Y is small, then fac-
torizations axiom holds for the Y−structure. Also f is
a Y fibration if and only if f has right lifting property
for Y − TC and f is a Y trivial fibration if and only if
f has right lifting property for Y − C.

Hence we also have the following: when Y is small,
A together with the classes (or structural maps) Y −F ,
Y −TF , Y −C, Y −TC and Y −WE form a pre model
category.

7. The Homotopy System Associated to Y

Although in Kan [KD55,561] the development of ho-
motopy groups associated to homotopy system is done
through cubical complexes, we have found easier to use
simplicial sets and their standard homotopy groups in
order to associate homotopy groups to a homotopy. In
fact, as we will see, Y homotopy as we define it will be-
come, for a suitable Y , a “simplicial homotopy”, namely
the homotopy associated to the Y simplicial system (a
concept studied in next paragraph) in which the machi-
nery of standard homotopy of simplicial sets is available.
Here, however, we develop Y homotopy independently
of the Y simplicial system.

In this and the next paragraph we assume that Y is
a “pointed” model of A, that is to say Y 0 is the final
object of A.

Note that the following defines a homotopy system in
A :

i I : A → A; X 
→ X × Y 1; α 
→ α× 1Y 1 .

ii Ji : 1A → I; X 
→ Ji(X) : X ∼= X × Y 0 1×di→
X × Y 1.

iii g : I → 1A; X 
→ g(X) : X×Y 1 1×So

→ X×Y 0 ∼= X.

We call it the Y homotopy system in A and the cor-
responding homotopy is the Y homotopy. If f, g : X →
K ∈ A, and f is homotopic to g through this homotopy
we write f Y∼ g, f ∼ g(Y ) or when the use of Y 1 is to

be emphasized we write f Y 1

∼ g.

Therefore f Y∼ g if and only if here exitsH : X×Y 1 →
K such that H ◦ d0 = f and H ◦ d1 = g.

As for the effect of SY : A → ∆◦S itself on Y homo-
topy, if f Y∼ g, then SY (f) ∼ SY (g), where∼ denotes the
standard homotopy in ∆◦S. However we will present a
structure which permits the use of simplicial homotopy
in full power in favor and the one in A induced and Y ,
including homotopy groups, exact homotopy sequences,
etc, as done by Quillen [QD67].

8. The Y Simplicial Structure of A
The Y simplicial structure is, roughly speaking, the

generalization of functional complexes in ∆◦S, when in
(XK)n = ∆◦S(K × ∆[n], X) the models ∆[n] are sub-
stituted by Y n, where Y : ∆→ ∆◦S.

The formal definition of simplicial system in cate-
gories, and the concept of simplicial category was given
in the introduction. Here study first the machinery
available in the simplicial system induced by special
functors Y : ∆→ A, then the relations with the Y struc-
ture and Y homotopy. In this paragraph we consider a
pointed Y which realizes products on standard models.
Therefore its realization RY : ∆◦S → A commutes with
finite products. On the other hand the following assign-
ments define a functor HomY : A×A → ∆◦S:

i For X,K ∈ A, HomY (X,K) = SY ×X(K).
ii For f : X1 → X and g : K → K1, HomY (f, g) is

the map given level wise by

HomY (f, g)n : HomY (X,K)n → HomY (X1,K1)n

which maps α 
→ g ◦ α ◦ (1Y n × f).
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Notice that HomY (X,K) is a generalization of KX .
In fact HomY (X,K)n =SY ×X(K)n =∆◦S(Y n×X,K).

We show next that HomY admits an associated sim-
plicial composition, as required in a simplicial systems.

i The following defines a simplicial functor for any
simplicial sets X, K, Z:

HomY (X,K)n ×HomY (X,Z)n → HomY (X,ZK)n

(α, β) 
→ β ◦ α = β ◦ (α× 1Y n) ◦ (1×∆(Y n))
Or more graphically β ◦ α is the following compo-
sition

X × Y n 1×∆[n]→ X × Y n α×1Y n→ K × Y n β→ Z

ii The composition of part i is associative in the sense
that for X, K, Z, T and f ∈ HomY ( X,K )n,
g ∈ HomY (Z,K)n and h ∈ HomY (Z, T )n then
(h ◦ f) ◦ g = h ◦ (f ◦ g).

To complete the simplicial system we are required to
show that HomY (X, K ) is a simplicial set built up on
∆◦S(X,K) or to say better whose 0-level is ∆◦S(X,K)
which behave appropriately with the simplicial compo-
sition.

i The functions λ( X,K ) given by A( X,K ) →
HomY (X,K)0; u 
→∼

u (= X × Y 0
∼=→ X

u→ K)
define a natural isomorphism.

ii Let f ∈ HomY (K,Z)n, u ∈ ∆◦S(X,K) and let
sn
0 denote the composition
HomY (X,K)0

s0→ HomY (X,K)1
s0→ ...

→ HomY (X,K)n

If g ∈ HomY (W,X)n and u ∈ ∆◦(X,K) then

HomY (W,u)n(g) = sn
0 (u) ◦ g

Part i is clear. For part ii notice that sn
0 (

∼
u) =

u0((S0)n × 1X). Furthermore if f : Y n × K → Z one
has a composition

Y n × X
∆(Y n)×1→ Y n × Y n × X

1×u0((s0)n×1X )→ Y n × K
f→ Z

On the other hand recall that

HomY (u, Z)n : A(Y n ×K,Z)→ A(Y n ×X,Z)

maps f 
→ (Y n ×X 1×u→ Y n ×K f→ Z).

We want to prove that the composition given above
and the image of f by the last function coincide. But
(level wise) the image of (Y n, X) by the composition
above is

f [1Y n× ∼
u0 ((S1)n × 1X)](∆(yn)× 1)(yn, x)

= f [1Y n× ∼
u0 ((S0)n × 1X)](yn, yn, x)

= f(yn,
∼
u ((S0)n(yn)), x))

= f(yn,
∼
u (∗, x))

= f(yn, u(x))

Part ii is proved similarly.

Remark:

i HomY with the simplicial composition given and
the natural isomorphism

∆◦S(X,K)→ HomY (X,K0)

form a simplicial system which we refer to as the
simplicial system associated to Y or the Y simpli-
cial system in A.

ii So far the only condition used has been that Y is
pointed. For the existence of cylinder and path ob-
jects as well as for the equivalence of right and left
homotopy, we will need that Y realizes products
on standard models.

In order to develop path objects XK and cylinders
objects X⊗K for the models in A, and since one of the
properties desired is the equality

HomY (X ⊗Y K,Y ) ∼= (HomY (X,Y ))K

(see in the introduction: Simplicial system), we notice
that

HomY (X,Y )K = S∆×KSY ×X(Y )
Therefore it would be helpful to have a relation between
composition of singular functors and singular functors
of composite functors. That we do next.

Let Y, Z : ∆ → A be cosimplicial objects of A. One
has the composition ∆ Z→ ∆◦S RY→ A, which is again a
model in A. Then: There exits a natural isomorphism
η : SY ◦ SZ → SRY ◦Z .

In fact, one can see that the isomorphism of adjoint-
ness of the pair ∆◦S RY→ A SY→ ∆◦S applied level wise to
Z gives an isomorphism

ηn : ∆◦S((RY (Zn), X)↔ ∆◦S(Zn, SY (X))

with inverse, say ρn. It follows from naturality of the
singular and realization functors that η is a simplicial
map and is natural on X.

9. Existence of Cylinder and Path Objects

Let X ∈ A and K ∈ ∆◦S. There exists a
pair (X ⊗Y K,α) with X ⊗Y K in A and αK : K →
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HomY (X⊗Y K), which induces a natural isomorphism,

α∗
K : HomY (X ⊗Y K,Y ) ∼= [HomY (X,Y )]K

Remark:
The isomorphism

HomY (X ⊗Y K,Y ) ∼= [HomY (X,Y )]K

has not been proved to be the one used by Quillen
[QD67] within the framework of the simplicial struc-
ture of a simplicial category, but it works remarkably
well and we saw no reason to insist on Quillen’s isomor-
phism. The same remark is valid in the case of path
objects, next.

Let X ∈ A and K ∈ ∆◦S. There exists a pair
(XK(rel.Y ), β) where XK(rel.Y ) is an object of A and

β : K → HomY (XK(rel.Y ), X)

is a simplicial map, which induces a natural isomor-
phism

β∗
K : HomY (Y,XK(rel.Y ))→ [HomY (Y,X)]K

The following easy to check formulas are useful in the
study of relations between the Y simplicial system, Y
homotopy, and Y pre model structures.

Proposition:

i ⊗Y is “associative” in the following sense:

X ⊗Y (K ⊗ L) = (X ⊗Y K)⊗Y L

ii (XK(rel.Y )L(rel.Y ) ∼= XK×L(rel.Y ).
iii SY ( HomY ( X, K )) ∼= ST ( K ) where

T = (RY ◦ Y )×X.
iv For each n, SY (HomY (Y,X))n = ∆◦S(Y,XN )

where N = RY (Y n).
v SY (XRY (K)) ∼= (SY (X))K ∼= SL(X) where L =
Y ×RY (K).

10. Relative Subdivisions

In this parts we dealt with the relation among homo-
topies induces by models. Since there is little difference
when using ∆ or other category δ we use the later most
of the time.

Kan [KD55,561,562] and other authors [FR68] have
given characterizations of functors ∆◦S → ∆◦S called
“subdivision functors” which are distinguished, among
other things because the diagram below commutes up

to homotopy equivalence.

Top

� 0

S
H

| |
| |

� 0

S

| | : ∆◦S → Top denotes Milnor’s geometric realization
[MJ57].

Here we extend the concept of subdivision and give
techniques to build subdivision functors in a more ge-
neral context. First we work with the standard scheme
category ∆ and then, in a further generalization, any
category δ is used as scheme. Thus instead of simplicial
objects we work with general pre sheaves.

For the first part, instead of the geometric realization
functor we use the realization of a model M : ∆→ Top,
and instead of normal homotopy we use that of a ho-
motopy system γ. If Sd : ∆◦S → ∆◦S denotes the
desired subdivision functor, RM : ∆◦S → Top the re-
alization induced by M , and “

γ∼” the homotopy equi-
valence induced by γ, then one would like to have that
RM (Sd(X))

γ∼ RM (X) for each simplicial set X.

If A and B are categories, and a functor R : A → B
admits right adjoint S : B → A, we say that (R,S) is an
adjoint pair. As for notation, ∆B denotes the category
of the cosimplicial objects of B and ∆◦B the simplicial
ones. Also, if X is a simplicial object of B we denote
X(n) = Xn, and if w : [n]→ [n] is an arrow of ∆, then
X(w) = w∗. For the cosimplicial case the notation will
be respectively Xn and w∗. Finally, if A is an object of
B then the constant functor of value A will be denoted
by

..

A when is considered as a cosimplicial object of B
and A.. when considered as simplicial object of B.

11. Singular Functors and Realizations

According to the theory of adjoint pairs, a functor
Y : ∆→ B defines a functor SY : B → ∆◦S given on the
objects by (SY (A))n = B(Y n, A) and if w : [n] → [n]
then (SY (A))(w) is given by composition with Y (w).
Now, if f is a morphism of B then SY (f) is given level
wise by composition with f .

When B is a co complete category SY admits a left ad-
joint denoted RY : ∆◦S → B. The categories S (sets),
∆◦S and Top are co complete and therefore singular
functors admit realizations. We now characterize them.
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Given a model Y : ∆ → S (respectively Z : ∆ →
Top) then its induced realization is given by

RY (X) =
(∐

n

Xn × Y n
)
/t ,

respectively,

RZ(X) =
(∐

n

Xn × Zn
)
/t,

where
∐

denotes the union (respectively the topological
sum), Xn × Y n the set theoretical product (respectively
Xn × Zn denotes the topological product taking Xn as
a discreet space), and the quotient is the set theoretical
(resp. topological) quotient for the equivalence relation
t that for each w : [n]→ [n], x in Xn, and y in Y n (res-
pectively z in Zn) identifies the couples (w∗(x), y) and
(x,w∗, y) (respectively (w∗(x), z) and (x,w∗, z)). Also,
if f : X → K, then RY (f)([x, y]) = [fn(x), y] (respec-
tively RZ(f)([x, z]) = [fn(x), z]), where [x, y] denotes
the class of equivalence of the couple (x, y).

One proofs that RY (respectively RZ) is a covariant
functor and that is left adjoint of SY (respectively SZ).

In the case of Y : ∆ → ∆◦S we denote, for each Y n

in ∆◦S, Y n(m) = Y n
m. Thus in Y n

m, n varies contra vari-
antly and m co variantly. Is easy to see that, for each
m, Ym defines a set theoretical model Ym : ∆ → S
given by Ym[n] = Y n

m and for each w : [n] → [m],
Ym(w) = (Y (w))m.

For each Y : ∆→ ∆◦S an adjoint functor of SY , say
RY , is given on the objects by (RY (X))m = RYm

(X),
and if r : [n] → [m] then (RY (X))(r) = RYr

(X), where
Yr : Yn → Ym is the cosimplicial function (Yr)p = Y p(r)
and RYr

: RYn
→ RYm

is the natural transformation in-
duced by Yr on the set theoretical realization functors.
On the morphisms, if f : X → K then (RY (f))m =
RYm

(f).

The proof is easy but long. A known fact, worth-
while to clarify is the following: given two adjoint pairs

A R→ B S→ A and A R′→ B S′→ A, there exists a one to one
and onto function G : Trans(S, S′) → Trans(R′, R),
where Trans denotes the class of natural transforma-
tions of the first functor in the second. On the other
hand if Y, Y ′ : ∆ → B are two models of B and
a : Y → Y ′ is a cosimplicial morphism then it induces
a natural transformation Sa : SY ′ → SY , given on an
object A of B by (Sa : (A))n(T ) = T ◦ an for each T in
(SY ′(A))n. Here we have denoted G(a) = Ra. In previ-
ous results this mechanism was responsible for the equa-
lity RYr

= G(SYr
). Notice that in the set theoretical and

topological cases Ra is given by Ra(X)[x, y] = [x, a(y)],
while in the simplicial one is given by (Ra : (X))p =
Rap

(X).

The following result will be very useful in what fol-
lows:

Let B be a co complete category, Y : ∆→ B a model
on B and B I→ B J→ B an adjoint pair (notice that
∆ Y→ B I→ B is a model on B). Then there exists a
natural isomorphism P : RI◦J

∼= I ◦RY .

The proof follows from the fact that

∆◦S I◦RY→ B SY ◦J→ ∆◦S

is an adjoint pair and SI◦Y is naturally isomorphic to
SY ◦ J . In particular when B is S, ∆◦S or Top, and
I : B → B denotes the functor “product by A”, for a
A fixed in B, then I admits an adjoint when B is S and
∆◦S, but when B is Top it happens only for some A. In
such a case, for a model Y : ∆ → B one will have that
∆ Y→ B I→ B is precisely Y× ..

A. The proposition affirms
then that

RY×
..

A (X)
P∼= RY (X)×A

naturally.

12. Homotopies on Models

A homotopy system on a category has an extension
to a system on the category of its models. Indeed if γ =
(I, d0, d1, s) is a homotopy system in a category B then
γ induces on ∆B the system ∆γ = (∆I,∆d0,∆d1,∆s)
as follows: ∆I : ∆B → ∆B is the normal extension of
I to ∆B: if Y it belongs to ∆B then ∆I(Y )n = I(Y n)
and ∆I(Y )(w) = I(w). The natural transformations
are given by the equalities (∆di(Y ))n = di(Y n) and
(∆s(Y ))n = s(Y n), i = 0, 1.

Given two models Y , Z over B and two cosimpli-
cial morphisms F,G : Y → Z then it is clear that
F

∆r∼ G if, and only if, for each n there exists hn (γ-
homotopy) of Fn in Gn such that for each w : [n]→ [m],
Z(w)hn = hmI(Y (w)).

Let us see now that homotopies and homotopy equi-
valences on models induce homotopies and homotopy
equivalences on the realizations. We first advance some
observations.

Given a homotopy system γ on B, then to the na-
tural tranformación di : 1B → I there corresponds, in a
bi univocal form, a natural transformation Di : J → 1B,
when (I, J) is an adjoint pair. Similarly, if we denote



113

di
RY

: RY → I ◦RY the transformation that in X has as
morphism di

RY
: RY (X) → I(RY (X)), then the corres-

ponding transformation on the singular functors is given
for each A in B by SY (Di(A)) : SY (J(A))→ SY (A) and
we denote it by SY D

i. Other two corresponding na-
tural transformations (natural isomorphisms) that will
use are p′ : SI◦Y → SY ◦ J with p : I ◦ RY → RY ◦I .
Finally, there exists a cosimplicial morphism Y → Y ◦ I
that in the level n is di

Yn
. We will denote it by di

Y .
We have then the corresponding natural transformations
Rdi

Y
: RY → RI◦Y and SdY i : SI◦Y → SY .

The following fact will be of great help in what fol-
lows: For i = 0, 1 the following diagram of natural trans-
formations commutes:

p

RY

Rd
i

RY

RI o Y

d
i

Y

I o RY

Let B be a category and γ a homotopy system whose
cylinder I admits right adjoint J . Let Y and Z be mo-
dels on B. Then:

i For each pair of simplicial morphisms F,G : Y →
Z, if F ∆r∼ G then for each simplicial set X one
has that RF (X)

γ∼ RG(X), naturally on X. In
particular,

ii If Y is ∆γ-homotopically equivalent to Z, then for
each simplicial set X, RY (X) is γ-homotopically
equivalent to RZ(X), naturally on X.

This result assures that if the cylinder I of a homo-
topy system γ on B has right adjoint J , then the homo-
topy system induced by γ on the models, which we have
denoted ∆γ, has a direct effect on the realizations de-
fined by the models. Indeed the proposition assures that
if the models are homotopically equivalent then their re-
alizations produce homotopically equivalent images for
the original system on B. In particular if we consider
on Top the normal homotopy and if we take as Y the
cosimplicial space of the topological simplexes ∆n then
RY is the geometric realization of Milnor. If Z is an-
other model on Top, homotopically equivalent to the
first one, then for each simplicial set X one has that
|X| � RZ(X), where � denotes the normal homotopy
equivalence on Top.

Notice that although each ∆n is homotopically equi-
valent to a point not all realization of simplicial sets are

so. This happens because the homotopy equivalence in
question on the models is not simplicial and therefore
is not an equivalence of the extended homotopy. Natu-
rally, if a model is level wise homotopically equivalent to
a point, for a given homotopy, so that the given model
and the cosimplicial point are homotopically equivalent,
then the relation homotopy induced by the model is tri-
vial.

In categories with final object, an object is homo-
topically trivial if it is homotopically equivalent to the
final object. If the concept of sub object also exists and
these are preserved by morphisms, then one has that if
a model is homotopically trivial then the final model ob-
ject is a sub object of the given model. Said otherwise:
if the final model is not a sub object of the model then
the last one cannot be homotopically trivial.

In the case of S, ∆◦S and Top this means that if
a model doesn’t have cosimplicial points then it is not
homotopically trivial.

This advantage, together with the one of having
Eilenberg−Zilber representations make of the models
without cosimplicial points specially capable tools for
good homotopy theories (see for example [RCRR811]).

Up to now we have studied conditions so that two
models Y, Z : ∆ → B have homotopically equivalent
realizations for a homotopy system γ on B. Now we
consider functors ∆◦S → ∆◦S capable of preserving the
homotopy type of the realizations.

Let Y : ∆ → ∆◦ S be a model of ∆◦ S and
M : ∆ → B a model of B. We consider a homotopy
system γ = (I, d0, d1, s) on B for which I has a right
adjoint J . In general the diagram

B

� 0

S
Y

�

M
RM

is not commutative, but it is when Y is the model of
the simplicial simplexes ∆[n]. However, when the dia-
gram commutes up to a ∆γ-homotopy equivalence, then
RM (SY (X)) and RM (X) are γ−homotopically equiva-
lent on B. We develop this point next.

We will call RY : ∆◦S → ∆◦S a subdivision (or a
subdivision of the identity) relative to the pair (γ,M)
if RM ◦ Y ∆r∼ M . When ∆ denotes the model of the
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∆[n] simplexes, R∆ is the identity of ∆◦S up to iso-
morphism. Then what we are doing is to compare at
the homotopy level RY with 1∆◦S , a notion that allows
us to assimilate RY (X) to a “subdivision” of X. For
example when γ is the homotopy system induced by

M0 di→ M1 s→ M0 (i = 0, 1), by means of the product,
we can accept that if Y ∆r= ∆ then the model Y is a
“subdivision” of ∆. It will be seen that this implies
that RM (X) γ= RM (RY (X)) which means that, at level
of realizations (via RM ), X and RY (X) have the same
γ-homotopy type. For consistency we assimilate RY (X)
as a subdivision of X, achieved upon the subdivision Y
of ∆ limited only by homotopy. Then one goes further
using any homotopy γ, and imposing conditions on Y so
that the previous results still hold. The conditions on
Y and ∆∆ can hold, up to weak homotopy equivalence.
That is the reason for the name of relative subdivisions.

Theorem: Let γ be a homotopy system on B whose
cylinder admits a right adjoint. Let M be a model on
B and Y a model on ∆◦S. If RY is a subdivision re-
lative to (γ,M) then there exists a natural transforma-
tion a : RM → RM ◦ RY such that for each X in ∆◦S,
aX : RM (X) → RM (RY (X)) is a γ-homotopy equiva-
lence.

For the proof, let us remember that, since RM ◦Y ∆r=
M , there exists a transformation e : RRM◦Y → RM such
that for each X, eX is a γ-homotopy equivalence. The
theorem will be proved if we exhibit a natural isomor-
phism RM ◦RY → RRM

◦Y , or equivalently one natural
isomorphism SRM◦Y → SY ◦ SM , but it is obtained by
means of the following chain of natural isomorphisms
(SRM◦Y (A))n = B((RM ◦ Y )n, A) = B(RM (Y n), A) =
∆◦S(Y n, SM (A)) = (SY (SM (A)))n.

A pair (Y,M), where Y is a model of ∆◦S and M is a
model of B, is said to be a singular pair if RM ◦Y ∼= M .

Is clear that if (Y,M) is a singular pair then there
exists a natural isomorphism RM ◦ RY → RM . There-
fore Y is a subdivision relative to (γ,M) for any ho-
motopy system γ on B. The converse is also true since
“=” is the homotopy relation of particular homotopy
systems on any category. For example that is the case
for any homotopy system in which d0 = d1.

Up to now we have defined subdivisions of the iden-
tity relative to pair (γ,M). Now we consider subdivi-
sions of any models.

Let γ be a homotopy system on B whose cylinder ad-
mits a right adjoint and let M be a model of B. If Y

and Z are models of ∆◦S we say that Y is a subdivi-

sion of Z relative to (γ, M), denoted Y
(γ, M)∼ Z, if

RM ◦ Y ∆r∼ RM ◦ Z. Notice that if the homotopy of

γ is transitive then the relation
(γ,M)∼ is an equivalence

relation on the class of the models of ∆◦S.

The relation
(γ,M)∼ compares models through its rea-

lizations in a weak way, via the homotopy equivalence
induced by γ on the models of B. Also, it compares
their realizations (via RM ) by means of the homotopy
equivalence of γ in B. For if Y , Z, γ, and M are as

above and if Y
(γ,M)∼ Z then there exists a natural trans-

formation a : RM ◦ RY → RM ◦ RZ such that for each
X in ∆◦S the morphism aX : RM (X) → RM (RZ(M))
is a γ-homotopy equivalence.

13. Subdivisions on Pre Sheaves

It is known that a covariant functor Y :δ → A, where
δ and A are any categories, induces a covariant func-
tor SY : A → δ◦S. If A is co complete then SY has
a left adjoint functor, denoted here by RY : δ◦S → A.
Generalizing the terminology of [MJ57] and [RR76] we
call

i The functor Y : δ → A a δ-model of A, or a model
of A when δ is clear.

ii SY the singular functor and RY the realization
functor of Y .

So far we have studied the repercussions on the func-
tors RY and RZ produced by the existence of a homo-
topy equivalence Y � Z, induced in δA by a preset ho-
motopy of A when δ is the category ∆. The homotopy
induced in ∆A imposes conditions of naturality that oc-
casionally can be very restrictive. One can see however
that if one considers naturality on a restricted number
of arrows of ∆, then the theory still works. This is
equivalent to change the category ∆ restricting arrows.

For generalization we take any unrestricted category
δ and work as follows: first we give the extension of a
homotopy system of A to δA (δA the category of co-
variant functors δ → A and natural transformations as
morphisms) and we show that if Y and Z are models of
A, homotopically equivalent for that extension, then for
each pre sheaf X of δ◦S, it happens that in A, RY (X)
is homotopically equivalent to RZ(X), naturally on X.
Further we fix a realization RM : δ◦S → A and gene-
ralize the case of [KD55,561,562] to give conditions on
two functors F,G : δ◦S → δ◦S so that the realizations
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of F (X) and G(X) for RM are naturally homotopically
equivalent. Those said conditions define a relationship
on the functors δ◦S → δ◦S that will be called of rel-
ative subdivision, extending the terminology of [KD57].
In general a standard homotopy in δ◦S doesn’t exist. So
we fix a homotopy system there, another in A, and we
give conditions relating these two systems by means of
the functor RY : δ◦S → A induced by Y : δ → A and
we say that “Y carries the system of δ◦S into the one
of A”.

If both Y and Z carry the system of δ◦S into the one
of A and if Y is homotopically equivalent to Z (for the
homotopy of δ◦S extended from A) then for each A of
A, SY (A) is homotopically equivalent to SZ(A) in δ◦S.
When δ = ∆ and homotopy is the normal one in ∆◦S
and Y � Z then the homologies induced by Y and Z in
A are isomorphic.

With normal changes the proofs for ∆ can be adapted
to the new generalization.

In what follows A denotes a co complete category.
For two models Y, Z : δ → A and a morphism of mod-
els f : Y → Z (natural transformation) we denote by
Sf : SZ → SY the transformation induced by f on sin-
gular functors.

We dealt now with the construction of a natural
transformation Rf : Ry → Rz.

Recall by [RCRR812] that if we denote by ΦY : 1→
SY ◦RY and ΨY : RY ◦SY → 1 adjointness transforma-
tions for (RY , SY ), by ΨZ , ΦZ , those of (RZ , SZ) and
by

A(RY (X), A) ←→ δ◦S(X,SY (A))
α → αY

βY ← β

(respectively α→ αZ , β → βZ) the adjointness isomor-
phisms, then

Rf (X) = [Sf (RZ(X)) ◦ ΦZ(X)]Y : RY (X)→ RZ(X)

The extension of homotopy systems on A to systems
on δA is the following one: If η = (I, d0, d1, s) is a ho-
motopy system on A then δη = (δI, δd0, δd1, δs) de-
notes the system in δA with cylinder δI(Y ) = I ◦ Y
and δI(λ)x = I(λx) for each morphism λ : Y → Z in
δA, where δdi(Y ) : Y → δI(Y ) is given by δdi(Y )x =
di(Y (x)) and δs(Y ) by δs(Y )x = s(Y (x)), x ∈ δ.

The δn homotopy is a natural extension of the homo-
topy η because if Y , Z are objects of δA and F,G :
Y → Z morphisms, then F

δη∼ G (F is homoto-
pic to G via δη) if, and only if, there exists a family

hX : I(Y (X)) → Z(X) of η-homotopies FX ∼→ GX

such that if w : X → X ′ is a morphism of δ, then
Z(w)0hX = hX′ ◦ I(Y (x)).

Since the homotopy relation of a homotopy system
is not generally an equivalence relation we fix and keep
an order that we exemplify for the system δη: If Z, Y
are two models of A (on δ) then Z is δη homotopically
equivalent to Y if there exist morphisms F : Z → Y and
G : Y → Z such that G ◦ F δη∼ 1Z and F ◦G δη∼ 1Y .

If the cylinder of η = (I, d0, d1, s) admits right adjoint
J : A → A then J is completed in a right homotopy sys-
tem denoted η∗ = (J,D0, D1, S), for which f

η∼ g if and

only if f
η∗
∼ g. In fact if we denote the adjointness trans-

formations by Φ : 1A → J ◦ I and Ψ : I ◦ J → 1A. For
α : I(A) → B, α∗ = J(α) ◦ ΦA and for β : A → J(B),
β∗ = ΨB ◦I(β), then to the transformations di (i = 0, 1)
there correspond the transformations Di

A : J → 1A

given for each A in A by Di
A = ΨA ◦ diJ(A) or di = Di

with the notation of [RCRR811].

For a model Y : δ → A, one has another model
δ

Y→ A I→ A on A whose realization functors RI◦Y and
singular SI◦Y are related with RY and SY in the follo-
wing way.

The adjoint pairs (I ◦ RY , SY ◦ J) and (RI◦Y , SI◦Y )
are equivalent. That is to say that there exists a natural
isomorphism ρY : SI◦Y → SY ◦ J (and, equivalently, a
natural isomorphism ρY : I ◦RY → RI◦Y ).

In fact (ρY (A))X is the isomorphism ofA given by the
following chain of natural isomorphisms: [SI◦Y (A)]X
= A(I ◦ Y(X), A) = A(I(Y(X)), A) ∗= A(I ◦ Y(X), A) =
SY (J(A))X , where ρY is the isomorphism induced by
ρy at realizations.

The effect on the realizations, of homotopy among
models, is the following one:

Let Y, Z : δ → A be two models and F , G : Y → Z

morphisms of A. If F δη∼ G then there exists a natural
transformation H : I ◦ RY → RZ such that for each X
in δ◦S, HX defines a homotopy RF (X) HX∼ RG(X).

That is so because a δη homotopy of F into G, say
H produces a commutative diagram, where of course
diRY (i = 0, 1) is the transformation given by diRY (X)
= di(RY (X)). One takes H = RH ◦ ρY . As a con-
sequence one also has that if Y and Z are models of A
and Y is δη homotopically equivalent to Z then there ex-
ists a natural transformation λ : RY → RZ such that for
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each X in δ◦S, λX : RY (X)→ RZ(X) is a η homotopy
equivalence.

0

� Y

R
�I (Y)

RH

RY

R
�I(Y)

RY

1R
�I (Y)

d R
0

Y

d R
1

Y RG

RF

I Ro Y RZ

When A = Top (or Kelly) and δ = ∆ for a model
Y : ∆ → Top the realizations RY (X) will be called
Y − CW complexes. They are thought of as complexes
with (in general non Euclidean) cells Y n. The last re-
sult establishes a sufficient condition so that the Y −CW
complex RY (X) is homotopically equivalent to the CW
complexes | X | (| | Milnor’s realization of [MJ57]).

In the topological case Y − CW complexes are a
particular case of cellular complexes with non Eucli-
dean cells [RCRR812] studied by the author, professor
Carlos Ruiz at National University of Colombia, and
Joaquin Luna [RCLJ82]. However, for any co com-
plete category A and any model Y : δ → A on A
the concept of Y−complex exist. In fact the sub cat-
egory of Y−complexes of A is precisely RY (δ◦Conj),
RY : δ◦Conj → A.

Moving to the case of relative subdivisions among
functors δ◦S → δ◦S we think of an object of δ◦S as a
set theoretical skeleton that serves as a pattern to patch
the pieces provided by Y (X) of A to obtain an object of
A . Up to now we have “modified” a model Y to obtain
another Z, in such a way that for each skeleton X the
obtained objects, one via patching objects Y (X) and
the other via patching objects Z(X), were homotopi-
cally equivalent. Now we are interested in how to mod-
ify the skeleton X into another X ′ so that for Y : δ → A
fixed, the objects obtained of them, patching Y (X) and
Y (X ′), are homotopically equivalent in A.

We consider the process X 
→ X ′ as a functor δ◦S →
δ◦S which is the result of a “modification” of the (iden-
tity) functor X 
→ X. Accepting that, it is clear that
a more general situation arises considering two functors
F,G : δ◦S → δ◦S for which we want to decide in which
sense G(X) is a “modification” of F (X), in such a way
that G(X) and F (X) are homotopically equivalent.

We use the way suggested by the precedent theory
namely, we consider the realization functors δ◦S F→
δ◦S RY→ A and δ◦S G→ δ◦S RY→ A, provided F and G
each admits right adjoint. In such a case F and G are
“modelable”. In other words they are realizations in-
duced by models and we can concentrate on the models
that define them. We will use the term “subdivision”
rather than “modification” following the case exposed
by Kan [KD57].

Let us fix a model M : δ → A and a system η in A
with right adjoint η∗. Let Y, Z : δ → δ◦S be models
of δ◦S. We will say that Z is a subdivision of Y rela-
tive to the couple (η,M) if RM ◦ Y is δη homotopically

equivalent to RM ◦ Z. We denote it by Y
(η,M)
↪→ Z.

If the homotopy η is transitive then
(η,M)
↪→ is an equiva-

lence relation on the models of δ◦S. With no conditions
on η one has the wanted result: If Y

(η,M)
↪→ Z, then there

exists a natural transformation L : RM ◦RY → RM ◦RZ

such that for each object of δ◦S, LX : RM (RY (X)) →
RM (RZ(X)) is a η homotopy equivalence.

When F and G admit right adjoint it will be said that

G is a subdivision of F relative to (η,M) if F ◦ δ
(η,M)
↪→

G ◦ δ (δ : δ → δ◦S the natural inclusion). Since F ◦ δ
(respectively G◦δ) is the model defining F (respectively
G), what we have is that if G is a subdivision of F rel-
ative to (η,M) then for each X in δ◦S, RM (F (X)) is
homotopically equivalent to RM (G(X)) naturally on X.

If G
(η,M)
↪→ 1δ◦S we will simply say that G is a “subdivi-

sion functor module (η,M)”.

Notice that so far we have obviated the use of ho-
motopy systems in δ◦S. However there exists an inter-
mediate step giving a homotopy system in δ◦S that is
carried by M into η (see below). If Y is homotopically
equivalent to Z for the extension of the homotopy from

δ◦S then Y
(η,M)
↪→ Z. In such a case, a sufficient con-

dition for RZ(δ◦S → δ◦S) to be a subdivision of RY

relative to (η,M) is that Y � Z(mod δn).

14. Isomorphic Homologies

Returning to the case ∆ → A, the singular functor
SY : A → ∆◦S gives place in an obvious way to a ho-
mology on A induced by Y . With the same homotopy
concept among models, Y, Z : ∆→ A one can compare
SY with SZ using the standard homotopy of ∆◦S . The
process is also generalizable as we will see later. In this



117

paragraph we consider the effect produced by homotopy
equivalencies of models on the respective singular func-
tors.

We consider in A a homotopy system η =
(I, d0, d1, s), with right adjoint η∗ = (J,D0, D1,S).
There are then adjoint pairs A I→ A J→ A and A 1A→
A 1A→ A. Once fixed adjointness transformations there
exist isomorphisms Trans( 1A, I ) → Trans( J, 1A )
and Trans(I, 1A)→ Trans(1A, J). The first one sends
di in Di (i = 0, 1) and the second sends s in S. If
one also has an adjoint pair A R→ B S→ A, with fixed
adjointness transformations then there are two adjoint
pairs in which we are interested namely A R→ B S→ A
and A RI→ B JS→ A, together with the following natural
transformations and notations:

• R(di
A) : R(A) → R(I(A)), A ∈ A, i = 0, 1, de-

noted Rdi.
• R(sA) : R(I(A))→ R(A), A ∈ A, denoted Rs.
• Di

S(B) : J(S(B)) → S(B), B ∈ B, i = 0, 1, de-
noted Di

S .
• SS(B) : S(B)→ J(S(B)), B ∈ B, denoted SS .

One can verify that if the adjointness transformations
of (RI, JS) are those obtained from the pairs (I, J) and
(R,S), the isomorphism Trans(R,RI)→ Trans(JS, S)
then sends Rdi in Di

S (i = 0, 1) and Trans(RI,R) →
Trans(S, JS) sends RS in SS . Similarly if β H→ A T→ B
is an adjoint pair then also is B H→ A I→ A J→ A T→ B
and we have transformations and notations as follows:

• di
H(B) : I(H(B)) → H(B), B ∈ B, i = 0, 1 de-

noted di
H .

• SH(B) : H(B)→ I(H(B)), B ∈ B, denoted SH .
• T (Di

A) : T (J(A)) → T (A), A ∈ A, i = 0, 1 de-
noted TDi.
• T (SA) : T (A)→ T (J(A)), A ∈ A, denoted TS.

with the obvious correspondences among them. Us-
ing the notation of [RCRR811] for two adjoint pairs
A Fi→ B Gi→ A (i = 1, 2) that assigns r → r by the
isomorphism Trans(F1, F2) → Trans(G1, G2) one has
the following group of formulas:

i Rdi = Di
S . iii di

H = TDi.
ii RS = SS . iv sH = TS.

In our case we are using models Y : δ → A each
one with a adjoint pair δ◦S RY→ A SY→ δ◦S, a homoto-
py system η = (I,d0,d1, s) in δ◦S with right adjoint

η∗ = (J,D0,D1, S) and the system η in A with adjoint
η∗.

We will say that Y realizes η into η (or equiva-
lently η∗ realizes into η∗) if a natural transformation
ε : RY I → IRY exists such that ε ◦ (RY di) = di

RY
for

i = 0, 1.

As has been seen in [RCRR811], if I : δ → δ◦S de-
notes the inclusion functor, then the previous definition
can be given equivalently, restricting IRY and RY I to
I(δ). That is to say demanding that for each x of δ
a morphism εY (x) : I(Y (x)) → RY (I(Y (x)) exists such
that εY (x) ◦ (RY di)Y (x) = (di

RY
)Y (x) naturally on x.

When one uses ∆◦S RY→ A SY→ ∆◦S with the normal
system in ∆◦S, Y 0 final object of A and η the sys-
tem induced by product with Y 0 di→ Y 1 (i = 0, 1) one
has a natural transformation, εK : RY (K × ∆[1]) →
RY (K) × RY (∆[1]) � RY (K) × Y 1, the first part of
which is induced by the projections and the second by
the natural isomorphism RY (∆[n]) � Y n connecting the
normal cylinder in ∆◦S with the one of RY (K) in A.
One also has the following commutative diagram for the
inclusion di

K : K → K ×∆[1].

� K

RY(K)

R (Y d i
) d

RY( [1])K�� RZ(K) Y�
1

K
R (K)Y

It shows that RY also connects the inclusions of ob-
jects into their cylinders. This is the situation we just
generalized. In [RCRR811] conditions were given so
that ε becomes an isomorphism, case in which RY res-
pects cylinders together with the inclusions and there-
fore transmits homotopies. Our condition here is then
weaker than the one used normally for transmission of
homotopies.

Let us suppose now that F,G : Y → Z are morphisms
between models Y, Z : δ → A. For each A, object of
A, one has two morphisms SF (A), SG(A) : SZ(A) →
SY (A). Let us see the implication derived on them by
the fact that F and G are homotopic via δη.

Let us suppose that Y realizes η into η. Let F,G :
Y → Z be two morphisms. If F is δη-homotopic to G,
then a natural transformation SZ(A)→ J(SY (A)) exists
that is a right (or η∗−) homotopy of SF (A) into SG(A),
for each A.
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The proof is long and will be omitted.

Let Y, Z : ∆ → A be two models of A which realize
η into η. If Y is δη homotopically equivalent to Z then
a natural transformation λ : SY → SZ exists such that
λA is a η (equivalently η∗) homotopy equivalence.

15. Examples

Let Y : ∆→ A be a cosimplicial model of A where A
is co complete, closed for finite products and with final
object ∗. Let us suppose that Y 0 = ∗. Then one has in
A a homotopy system η = (I, d0, d1, s) where

I(A) = A× Y 1

di
A : A � A× Y 0 1×di

→ A× Y 1(di : Y 0 → Y 1)

sA : A× Y 1 1×s0→ A× Y 0 ∼= A.

Let us suppose now that (−) × Y1 has right adjoint.
It is usually denoted ( )Y 1

. If η denotes the normal
system in ∆◦S then Y realizes η in η. If a priori Y is
∆η equivalent to Z then a cosimplicial morphism exists
F : Z → Y , equivalence of ∆η homotopy, for which
di ◦ F 0 = F 1 ◦ di.

This in turn implies at long last the following com-
mutative diagram

RZ(X)

R (Z d i
)

d i

RZ(X [1])�� RZ(X) Y�
1

X

R (X)Z

(1 (X) F ) Pr�
1

oRZ

Where Pr denotes the map (RZ(π1), iso ◦ RZ(π2)).
Therefore one has the following:

Let A be a co complete category, closed for finite prod-
ucts, with final object ∗, and let Y : ∆→ A be such that
Y 0 = ∗ and (−) × Y 1 has right adjoint. Let η be the

system induced by ∗ = Y 0 di→ Y 1 s0→ Y 0 (i = 0, 1),
and Z : ∆ → A any model of A. If Y is ∆η ho-
motopically equivalent to Z then a natural transforma-
tion λ : SY → SZ exists such that for each A of A,
λA : SY (A)→ SZ(A) is a homotopy equivalence in ∆◦S.

Now we consider examples of homotopically equiva-
lent models. There is a class of models in Top for which
the homotopy extended from Top preserve details from
the original that can be helpful. As an illustration let Y
be a model of Top. We say that Y is convex if for each

n, Y n is a convex subspace of a vector topological space
(on R) and for each w : [n] → [m], w∗ : Y n → Y m is a
lineal function. Then

i If Y is a convex model, Z is any model of Top and
F , G : Z → Y are any two cosimplicial continuous
functions, then F is homotopic to G by the homo-
topy of ∆Top, extension of the normal homotopy
of Top.

ii If Y and Z are convex models of Top admitting
cosimplicial functions Y → Z and Z → Y then Y
is homotopically equivalent to Z for the homotopy
of ∆Top extension of that of Top.

In what follows the homotopy of ∆Top (respectively
of ∆Kelly) extension of the normal homotopy of Top
(respectively of Kelly) will be called the normal ho-
motopy of ∆Top (respectively of ∆Kelly).

We have that if Y is a convex model of Top (respec-
tively Kelly) with cosimplicial points, then Y is null-
homotopic, that is to say, homotopically equivalent (for
the normal homotopy) to a cosimplicial point.

The converse is true for any not necessarily convex
space. In fact, if Y has cosimplicial points and Z doesn’t
have, then Y and Z are not homotopically equivalent.

For the model of the complexes ∆n of Top (or Kelly)
its realization is the geometric realization [MJ57]. It is
clear that |K| is not in general equivalent (homotopi-
cally) to the discreet space | | ◦K, which happens to be
the realization RY (K) for Y a cosimplicial point, even
thought each ∆n is homotopically null.

Our definition of homotopy among models is some-
how taking in consideration these facts. For convex
spaces of the category Kelly the relationship is very pre-
cise as we will see. But for the general case the existence
of a natural transformation λ : RY → RZ such that for
each X in ∆◦S, λX is a η homotopy equivalence doesn’t

seem to imply that Y
δη� Z, unless λ−1

X form a natural
transformation at least for X = ∆[n], n = 0, 1, · · · .

Recall that for Y : ∆ → A, RC(Y ) (“The right cut
of Y ”, see [RR76]) is the cosimplicial object of A de-
fined this way: [RC(Y )]n = Y n+1, the di : RC(Y )n →
RC(Y )n+1 are the same di : Y n+1 → Y n+2 but only
for i = 0, 1, ..., n + 1. Similarly for the sj : RC(Y )n →
RC(Y )n−1 are the same sj : Y n+1 → Y n but only for
j = 0, ...n − 1. It is easy to see that RC : ∆A → ∆A
is a covariant functor and that d : 1 → RC given for
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[d(Y )]n = dn+1 : Y n → Y n+1 is a natural transfor-
mation. If Y : ∆ → Top (respectively Kelly) is convex
then so is RC(Y ). Therefore if Y : ∆→ Top is a convex
model and there exists a continuous cosimplicial func-
tion RC(Y )→ Y then Y and RC(Y ) are homotopically
equivalent for the normal homotopy in ∆Top.

Taking the case of ∆ one has that:

di : RC(∆)n → RC(∆)n+1

(x0, ..., xn) 
→ (x0, ..., xi−1, xi, ..., xn+1)

for i = 0, ..., n+ 1

sj : RC(∆)n → RC(∆)n+1

(x0, ..., xn+1) 
→ (x0, ..., xj + xj+1, ..., xn+1)

for j = 0, ..., n+ 1

RC(∆) is not homotopically equivalent to ∆ be-
cause the first one has the cosimplicial point Pn =
(0, ..., 0, 1) ∈ Rn+2.

That example shows that, in general, do not exist
simplicial morphisms RC(Y ) → (Y ) and also that
RC(∆) is homotopically null.

Now RC(∆)−P is a cosimplicial space and d : ∆→
RC(∆) − P since Pn /∈ dn(∆n). Further RC(∆) − P
is convex since (0, ..., 0, 1) is a vertex of ∆n+1. Fi-
nally the fn−1 : (∆n − Pn−1) → ∆n−1 that maps

(x0, ..., xn) 
→
(

n−1∑
i=0

xi

)−1

(x0, ..., xn−1) is a cosimpli-

cial continuous function (RC(∆)− P )→ (∆− Pn).

Therefore one can also “extend” ∆ to a model W
with Wn = Rn+1 co faces and co degeneracies defined
identically as those of ∆, thus ∆ forming a cosimplicial
subspace of W . But W also has a cosimplicial point,
namely 0. Therefore it is homotopically null and cannot
exist continuous cosimplicial functions W →∆. Con-
trary to the previous case W −0 is not a cosimplicial

space. But if we consider Hn = {(x0, ..., xn)|
n∑

i=0

xi =0}
then W −H is a cosimplicial space and 0 ⊆ H ⊆
W . Now the function W − H → ∆, (x0, ..., xn) 
→(

n∑
i=0

xi

)−1

(x0, ..., xn) is continuous cosimplicial. How-

ever we cannot apply results for convex models since
W −H is not convex (it is not connected). In this case
it is clear that W −H is not homotopically equivalent to
∆ since for each n = 0, (W −H)n is not homotopically
null while ∆n is, and clearly from the definition one has

that a necessary condition for Y
δη� Z is that for each

x ∈ δ, Y (x)
η� Z(x).

The model H will be called by obvious reasons the
model of the hyperplane of W . We notice that
H0 = {0} and H1 is the straight line at l35◦ that goes
trough the origin. Also d0 = d1 : H0 → H1, which im-
plies the interesting fact that this model’s homotopy is
the equality and of course, homotopy equivalencies are
the homeomorphisms.

If we consider H(k)n = {(x0, ..., xn) ∈ Rn+1 |∑
xi = k} with co faces and co degeneracies like the

ones of W , then for each n, H(k)n is homeomorphic to
Hn. However H(k) doesn’t have cosimplicial points if
k = 0. This can be seen from the fact that if H(k)0

has cosimplicial points then has only one, since H(k)0

has one element, which most belong to the cosimpli-
cial point. But d0(k) = (0, k) and d1(k) = (0, k). As
(0, k) = (k, 0) ↔ k= 0, then H(k) doesn’t have cosim-
plicial points if k =0, although RH and RH(k) are level
wise homeomorphic. Since ∂∆[1] is realized by RH into
{(0, 0)} ⊆ {(x, y) ∈ R2 | x + y = 0} and by RH(k) into
the subspace {(0, k), (k, 0)} of {(x, y) ∈ R2 | x+ y = k}
then it is clear that the realizations are not homo-
topically equivalent. Apart from this H(k) � H(l) if
k = 0 = l.

The question on whether two models can have ho-
motopically equivalent realizations without being them-
selves homotopically equivalent is partially clarified for
convex models of the category Kelly with next result
which improves the late version: Let Y , Z be two convex
models of Kelly. The following statements are equiva-
lent:

i Y is homotopically equivalent to Z for the normal
homotopy of ∆Kelly.

ii There exist natural transformations λ : RY → RZ

and ρ : RZ → RY .

We notice that ∆, RC(∆)−P , W andH(k) are mod-
els of the category Kelly. Since in this category and in
that of the simplicial sets the functor (−)×A has right
adjoint ( )A for each A, then in particular the cylin-
der functors (−)×∆[1] in ∆◦S and (−)× I have right
adjoint. It is also known that Kelly is a co complete
category. At the level of realizations one thus has that

i There exists a natural transformation
λ : RRC(∆) → RP such that for each simplicial
set X, λX : RRC(∆)(X)→ RP (X) is a homotopy
equivalence.
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ii There exists a natural transformation η : RW →
RP (X) such that for each simplicial set X, ηX :
RW (X)→ RP (X) is a homotopy equivalence.

iii There exists a natural transformation ρ :
RRC(∆)−P → R∆ = | | that for each simplicial
set X, ρX : RRC(∆)−P (X) → |X| is a homotopy
equivalence.

Because of parts i and ii for each simplicial set the
spaces π0(X) (discreet), RRC(∆)(X) and RW (X) are
homotopically equivalent, naturally on X.

As for the singular functors since the homotopy of
∆ in Kelly is the normal homotopy then by using
relations already given for singular functors one has
that: there exists a transformation ε : SRC(∆)−P →
S∆ = Sing such that for each space A of Kelly, εA :
SRC(∆)−P (A) → SingA is a homotopy equivalence in
∆◦S.

Under the context of the theory here developed parts
i and iii above are not extendable to singular functors
since cosimplicial points do not carry the homotopy of
∆◦S into that of Kelly. In fact suppose the opposite
and consider the diagrams (i = 0, 1).

RP(X)

R (P d i
)

d i

RP(X [1])�� RP(X) I�

X

R (X)P

RZ

When X is a simplicial point RP (X)
and RP (X × ∆[1]) have a single point. There-
fore εXRP (d0

X) = εXRP (d1
X), or equivalently (∗, 0) =

(∗, 1), ∗ ∈ RP (X).

In the same way W and RC(A) are homotopically
equivalent but the theory cannot be applied at level of
singular functors. Indeed by a similar argument to the
one just given it follows thatW and RC(∆) do not carry
the homotopy of ∆◦S in that of Kelly.
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