Please use this identifier to cite or link to this item: https://repositorio.accefyn.org.co/handle/001/2780 Cómo citar
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPeralta, César D.-
dc.contributor.authorRodríguez, Yeinzon-
dc.date.accessioned2024-01-27T01:59:45Z-
dc.date.available2024-01-27T01:59:45Z-
dc.date.issued2012-03-20-
dc.identifier.issn0370-3908spa
dc.identifier.urihttps://repositorio.accefyn.org.co/handle/001/2780-
dc.description.abstractEn este artículo, se estudia la posibilidad de que el bosón de Higgs del Modelo Estándar de Partículas Elementales pueda generar inflación primordial del tipo rodadura lenta, lo que resolvería los problemas clásicos de la cosmología estándar. El requisito crucial para hacer viable esta posibilidad, es que el campo escalar de Higgs presente un tipo particular de acoplamiento no mínimo a la gravedad. Se realiza una transformación conforme desde el marco de Jordan al marco de Einstein encontrándose una modificación al tradicional potencial de Higgs para valores muy grandes del campo, lo que permite una zona de alta planitud y, por ende, inflación primordial del tipo rodadura lenta. Se comparan los resultados asociados al índice espectral y a la razón tensor a escalar con las cotas observacionales más recientes, encontrándose que la generación de estructuras a gran escala en este escenario es satisfactoria.spa
dc.description.abstractParticles can generate primordial inflation of the slow-roll variety, which solves the classical problems of the standard cosmology. The crucial requirement, for this possibility to be feasible, is that the scalar Higgs field is, in a particular way, non-minimally coupled to gravity. A conformal transformation is performed from the Jordan’s frame to the Einsten’s frame so that a modification on the traditional Higgs potential is found for very large values of the fleld; this allows a high flatness zone and, therefore, primordial inflation of the rodadura lenta variety. The results associated to the spectral index and the tensor to scalar ratio are compared against the most recent observational bounds; from the latter, we conclude that the generation of the large scale structure is successful in this scenario.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.rightsLa revista de la Academia se distribuye con el modelo de acceso abierto y la licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International con el fin de contribuir a la visibilidad, el acceso y la difusión de la producción científica.spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.titleIDENTIFICANDO EL INFLATÓN CON EL BOSÓN DE HIGGS DEL MODELO ESTÁNDARspa
dc.titleIDENTIFYING THE INFLATON WITH THE STANDARD MODEL HIGGS BOSONeng
dc.typeArtículo de revistaspa
dcterms.audienceEstudiantes, profesores, comunidad científica.spa
dcterms.referencesAbbiendi G. et. al., 2003. Search for the Standard Model Higgs Boson at LEP, Phys. Lett. B 565, 61.spa
dcterms.referencesALEPH Collaboration et. al., 2010. Precision Electroweak Measurements and Constraints on the Standard Model, arXiv:1012.2367 [hep-ex].spa
dcterms.referencesAllahverdi R., Brandenberger R., Cyr-Racine F.-Y., & Mazumdar A., 2010. Reheating in Inflationary Cosmology: Theory and Applications, Ann. Rev. Nucl. Part. Sci. 60, 27.spa
dcterms.referencesATLAS Collaboration, 2012. Combined Search for the Standard Model Higgs Boson Using up to 4.9 fb-1 of pp Collision Data at √s =7 TeV with the ATLAS Detector at the LHC, Phys. Lett. B 710, 49.spa
dcterms.referencesBarbinsky A. O., Kamenshchik A. Yu., & Starobinsky A. A., 2008. Inflation Scenario Via the Standard Model Higgs Boson and LHC, JCAP 0811, 021.spa
dcterms.referencesBennett C. L. et. al., 2003. First-Year Wilkinson Microwave Aniso-tropy Probe (WMAP) Observations: Preliminary Maps and Basic Results, Astrophys. J. Suppl. Ser. 148, 1.spa
dcterms.referencesBezrukov F. & Shaposhnikov M., 2008. The Standard Model Higgs Boson as the Inflaton, Phys. Lett. B 659, 703.spa
dcterms.referencesBezrukov F. L., 2008. Non-Minimal Coupling in Inflation and In-flating with the Higgs Boson, arXiv: 0810.3165 [hep-ph].spa
dcterms.referencesBezrukov F. L., Magnin A., & Shaposhnikov M., 2009. Standard Model Higgs Boson Mass from Inflation, Phys. Lett. B 675, 88.spa
dcterms.referencesCervantes-Cota J. L. & Dehnen H., 1995. Induced Gravity Inflation in the Standard Model of Particle Physics, Nucl. Phys. B 442, 391.spa
dcterms.referencesCMS Collaboration, 2012. Combined Results of Searches for the Standard Model Higgs Boson in pp Collisions at √s =7 TeV, ar-Xiv:1202.1488 [hepex].spa
dcterms.referencesDeffayet C., Deser S., & Esposito-Farese G., 2009. Generalized Galileons: All Scalar Models whose Curved Background Extensions Maintain Second-Order Field Equations and Stress-Tensors, Phys. Rev. D 80, 064015.spa
dcterms.referencesDeffayet C., Esposito-Farese G., & Vikman A., 2009. Covarian Galileon, Phys. Rev. D 79, 084003.spa
dcterms.referencesDimopoulos S., Kachru S., McGreevy J., & Wacker J. G., 2008. Nflation, JCAP 0808, 003.spa
dcterms.referencesDodelson S., 2003. Modern Cosmology, Elsevier Academic Press, London -UK.spa
dcterms.referencesElias-Miro J. et. al., 2011. Higgs Mass Implications on the Stability of the Electroweak Vacuum, arXiv:1112.3022 [hep-ph].spa
dcterms.referencesGermani C. & Kehagias A., 2010a. New Model of Inflation with Non-Minimal Derivative Coupling of Standard Model Higgs Bosonto Gravity, Phys. Rev. Lett. 105, 011302.spa
dcterms.referencesGermani C. & Kehagias A., 2010b. Cosmological Perturbations inthe New Higgs Inflation, JCAP 1005, 019. Erratum-ibid. 1006, E01.spa
dcterms.referencesGranda L. N., 2011. Inflation Driven by Scalar Field with Non-Minimal Kinetic Coupling with Higgs and Quadratic Potentials,JCAP 1104, 016.spa
dcterms.referencesGranda L. N. & Cardona W., 2010. General Non-Minimal Kinetic-Coupling to Gravity, JCAP 1007, 021.spa
dcterms.referencesGrifflths D., 2008. Introduction to Elementary Particles, Wiley-VCH, Weinheim - Germany.spa
dcterms.referencesGuth A. & Pi S., 1982. Fluctuations in the New Inflationary Universe, Phys. Rev. Lett. 49, 1110.spa
dcterms.referencesGuth A. H., 1981. The Inflationary Universe: A Posible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23, 347.spa
dcterms.referencesHarrison E. R., 1970. Fluctuations at the Threshold of Classical Cosmology, Phys. Rev. D 1, 2726.spa
dcterms.referencesKamada K. et. al., 2012. Generalized Higgs Inflation, arXiv:1203.4059 [hep-ph].spa
dcterms.referencesKamada K., Kobayashi T., Yamaguchi M., & Yokoyama J., 2011. Higgs G-Inflation, Phys. Rev. D 83, 083515.spa
dcterms.referencesKane G., 1993. Modern Elementary Particle Physics: The Fundamental Particles and Forces?, Westview Press, Boulder -USA.spa
dcterms.referencesKobayashi T., Yamaguchi M., & Yokoyama J., 2011. Generalized GInflation: Inflation with the Most General Second-Order Field Equations, Prog. Theor. Phys. 126, 511.spa
dcterms.referencesKomatsu E. et. al., 2011. Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl. Ser. 192, 18.spa
dcterms.referencesLinde A., 1982. A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B 108, 389.spa
dcterms.referencesLinde A. D., 1983. Chaotic Inflation, Phys. Lett. B 129, 177.spa
dcterms.referencesLyth D. H. & Liddle A. R., 2009. The Primordial Density Perturbation: Cosmology, Inflation and the Origin of Structure, Cambridge University Press, Cambridge - UK. Mukhanov V. F., 2005. Physical Foundations of Cosmology, Cambridge University Press, Cambridge -UK. Nakamura K. et. al., 2010. The 2010 Review of Particle Physics, J. Phys. G 37, 075021.spa
dcterms.referencesNakayama K. & Takahashi F., 2010. Running Kinetic Inflation, JCAP 1011, 009.spa
dcterms.referencesNakayama K. & Takahashi F., 2011. Higgs Chaotic Inflation in Standard Model and NMSSM, JCAP 1102, 010.spa
dcterms.referencesNicolis A., Rattazzi R., & Trincherini E., 2009. The Galileon as a Local Modification of Gravity, Phys. Rev. D 79, 064036.spa
dcterms.referencesPenzias A. A. & Wilson R. W., 1965. A Measurement of Excess Antenna Temperature at 4080 Mc/s, Astrophys. J. 142, 419.spa
dcterms.referencesRodríguez Y., 2009. The Origin of the Large-Scale Structure in the-Universe: Theoretical and Statistical Aspects, LAP - Lambert Academic Publishing, Saarbrücken - Germany. Also available as PhD Thesis, Lancaster University, Lancaster - UK, 2005. arXiv:astro-ph/0507701.spa
dcterms.referencesSmoot G. F. et. al., 1992. Structure in the COBE Differential Microwave Radiometer First-Year Maps, Astrophys. J. 396, L1.spa
dcterms.referencesSpokoiny B.L., 1984. Inflation and Generation of Perturbations in Broken Symmetric Theory of Gravity, Phys. Lett. B 147, 39.spa
dcterms.referencesStarobinsky A. A., 1979. Spectrum of Relict Gravitational Radiation and the Early State of the Universe, Pis’ma Zh. Eksp. Teor. Fiz. 30, 719 [JETP Lett. 30, 682].spa
dcterms.references‘t Hooft G., 1980. Gauge Teories of the Forces Between Elemen-tary Particles, Sci. Am. 242, 90.spa
dcterms.referencesVan der Bij J.J., 1994. Can Gravity Make the Higgs Particle Decouple?, Acta Phys. Pol. B 25, 827.spa
dcterms.referencesVan der Bij J.J., 1995. Can Gravity Play a Role at the Electroweak Scale?, Int. J. Phys. 1, 63.spa
dcterms.referencesWald R. M., 1984. General Relativity, The University of Chicago Press, Chicago - USA.spa
dcterms.referencesWeinberg S., 1972. Gravitation and Cosmology, John Wiley & Sons, New York - USA.spa
dcterms.referencesWeinberg S., 2008. Cosmology, Oxford University Press, Oxford -UK.spa
dcterms.referencesZee A., 1979. Broken-Symmetric Theory of Gravity, Phys. Rev. Lett. 42, 417.spa
dcterms.referencesZel’dovich Y. B., 1972. A Hypothesis, Unifyng the Structure and the Entropy of the Universe, Mon. Not. R. Astron. Soc. 160, 1P.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.versioninfo:eu-repo/semantics/updatedVersionspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.identifier.doihttps://doi.org/10.18257/raccefyn.36(138).2012.2429-
dc.subject.proposalInflaciónspa
dc.subject.proposalInflationeng
dc.subject.proposalBosón de Higgsspa
dc.subject.proposalHiggs bosoneng
dc.subject.proposalAcoplamiento no mínimo a la gravedadspa
dc.subject.proposalNon-minimal coupling to gravityeng
dc.subject.proposalNon minimaleng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.relation.ispartofjournalRevista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.relation.citationvolume36spa
dc.relation.citationstartpage25spa
dc.relation.citationendpage36spa
dc.contributor.corporatenameAcademia Colombiana de Ciencias Exactas, Físicas y Naturalesspa
dc.identifier.eissn2382-4980spa
dc.relation.citationissue138spa
dc.type.contentTextspa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
Appears in Collections:BA. Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales

Files in This Item:
File Description SizeFormat 
3-Física - César Peralta y Yeinzon Rodríguez.pdf1.33 MBAdobe PDFThumbnail
View/Open


This item is licensed under a Creative Commons License Creative Commons